Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion behavior/baselines/behavioral_cloning/base_input_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
# Constants
IMG_DIM = 128
ACT_DIM = 28
PROPRIOCEPTION_DIM = 20
PROPRIOCEPTION_DIM = 22
TASK_OBS_DIM = 456


Expand Down
19 changes: 11 additions & 8 deletions behavior/baselines/behavioral_cloning/simple_bc_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
import argparse
import logging
import sys

import os
sys.path.insert(0, "../utils")
import base_input_utils as BIU
import torch
Expand All @@ -18,7 +18,7 @@
class BCNet_rgbp(nn.Module):
"""A behavioral cloning agent that uses RGB images and proprioception as state space"""

def __init__(self, img_channels=3, proprioception_dim=20, num_actions=28):
def __init__(self, img_channels=3, proprioception_dim=22, num_actions=28):
super(BCNet_rgbp, self).__init__()
# image feature
self.features1 = nn.Sequential(
Expand Down Expand Up @@ -46,7 +46,7 @@ def forward(self, imgs, proprioceptions):


class BCNet_taskObs(nn.Module):
def __init__(self, task_obs_dim=456, proprioception_dim=20, num_actions=28):
def __init__(self, task_obs_dim=456, proprioception_dim=22, num_actions=28):
super(BCNet_taskObs, self).__init__()
# image feature
self.fc1 = nn.Linear(task_obs_dim + proprioception_dim, 1024)
Expand Down Expand Up @@ -76,21 +76,24 @@ def parse_args():

# Training
device = "cuda" if torch.cuda.is_available() else "cpu"
# bc_agent = BCNet_rgbp().to(device)
bc_agent = BCNet_taskObs().to(device)
bc_agent = BCNet_rgbp().to(device)
# bc_agent = BCNet_taskObs().to(device)
optimizer = optim.Adam(bc_agent.parameters())

NUM_EPOCH = 5
PATH = "trained_models/model.pth"
PATH = "./trained_models"

for epoch in range(NUM_EPOCH):
optimizer.zero_grad()
output = bc_agent(data.task_obss, data.proprioceptions)
# output = bc_agent(data.task_obss, data.proprioceptions)
output = bc_agent(data.rgbs, data.proprioceptions)
loss_func = nn.MSELoss()
loss = loss_func(output, data.actions)
loss.backward()
optimizer.step()

log.info(loss.item())

torch.save(bc_agent, PATH)
if not os.path.exists(PATH):
os.makedirs(PATH)
torch.save(bc_agent, (f"{PATH}/model.pth"))