Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions apis/python/src/tiledb/vector_search/embeddings/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
from .image_resnetv2_embedding import ImageResNetV2Embedding
from .langchain_embedding import LangChainEmbedding
from .object_embedding import ObjectEmbedding
from .ollama_embedding import OllamaEmbedding
from .random_embedding import RandomEmbedding
from .sentence_transformers_embedding import SentenceTransformersEmbedding
from .soma_geneptw_embedding import SomaGenePTwEmbedding
Expand All @@ -18,4 +19,5 @@
"LangChainEmbedding",
"SomaScGPTEmbedding",
"SomaSCVIEmbedding",
"OllamaEmbedding",
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
from typing import Dict, Optional, OrderedDict, Sequence, Union

import numpy as np

# from tiledb.vector_search.embeddings import ObjectEmbedding


class OllamaEmbedding:
"""
Embedding functions from Ollama.

This attempts to import the embedding_class from the ollama module.
"""

def __init__(
self,
dimensions: int,
embedding_class: str = "embed", # really it's the method
embedding_kwargs: Optional[Dict] = None,
):
self.dim_num = dimensions
self.embedding_class = embedding_class
self.embedding_kwargs = embedding_kwargs

def init_kwargs(self) -> Dict:
return {
"dimensions": self.dim_num,
"embedding_class": self.embedding_class,
"embedding_kwargs": self.embedding_kwargs,
}

def dimensions(self) -> int:
return self.dim_num

def vector_type(self) -> np.dtype:
return np.float32

def load(self) -> None:
import importlib

try:
embeddings_module = importlib.import_module("ollama")
embedding_method_ = getattr(embeddings_module, self.embedding_class)
self.embedding = embedding_method_(**self.embedding_kwargs)
except ImportError as e:
print(e)

def embed(self, objects: Union[str, Sequence[str]]) -> np.ndarray:
return np.array(self.embedding(input=objects).embeddings, dtype=np.float32)
Loading