Skip to content

XMUDM/GlobalDiff

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GlobalDiff

GlobalDiff is a diffusion-based model designed to enhance sequential recommendation systems. It supports various backbone models like CBIT, Bert4Rec, SASRec and SRGNN, and can be easily adapted to different datasets. This repository includes implementations for ML-1M, KuaiRec, and Beauty datasets. GlobalDiff

Set Up

pip install -r requirements.txt

Reproduce the results

ML-1M

#CBiT
python -u GlobalDiff.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code ml-1m
#Bert4Rec
python -u GlobalDiff_bert.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code ml-1m
#SasRec
python -u GlobalDiff_SasRec.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code ml-1m
#SRGNN
python -u GlobalDiff_srgnn.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code ml-1m --pretrain_epoch 40

KuaiRec Data

#CBiT
python -u GlobalDiff.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code kuaishou
#Bert4Rec
python -u GlobalDiff_bert.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code kuaishou
#SasRec
python -u GlobalDiff_SasRec.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code kuaishou
#SRGNN
python -u GlobalDiff_srgnn.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code kuaishou --pretrain_epoch 40

Beauty

#CBiT
python -u GlobalDiff.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code beauty
#Bert4Rec
python -u GlobalDiff_bert.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code beauty
#SasRec
python -u GlobalDiff_SasRec.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code beauty
#SRGNN
python -u GlobalDiff_srgnn.py --timesteps 100 --lr 0.001 --optimizer adamw --diffuser_type Unet --random_seed 0 --dataset_code beauty --pretrain_epoch 40

BackBones

GlobalDiff supports direct transfer from CBiT, Bert4Rec, SASRec and SRGNN. In fact, we recommend using the original model's code for training. The relevant code links are as follows: https://github.com/hw-du/CBiT/tree/master; https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch; https://github.com/pmixer/SASRec.pytorch https://github.com/RUCAIBox/RecBole/blob/master/recbole/model/sequential_recommender/srgnn.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published