A fast and robust text2num converter library a library for recognizing, parsing and transcribing into digits (base 10) numbers expressed in natural language. It works on strings as well as on custom token lists.
No IA involved: it is low on resources (and energy!) consumption and the latency is very small.
text2num
is a python package that provides functions and parser classes for:
- Parsing numbers expressed as natural language words and converting them to integer values.
- Detection of ordinal, cardinal and decimal numbers in a stream of natural language words and get their decimal digit representations.
Supported natural languages (in alphabetical order):
- Dutch;
- English;
- French;
- German;
- Italian;
- Portuguese (Brazilian and European);
- Spanish.
This new generation of text2num
relies on a new and improved algorithm implemented in Rust whereas the 2.X branch
is in pure python and uses a less capable algorithm and has now been retired.
You don't need Rust to install and run text2num! as we provide precompiled wheels.
- dropped support for signed numbers — the feature was broken anyway;
- parsing mode is relaxed by default (i.e. "greedy") — you can use punctuation (e.g. commas) to separate groups in text, or voice pauses if processing Speech-to-Text token streams;
- the
threshold
optional parameter toalpha2digits
now applies to both ordinals and cardinals. As a consequence the signature ofalpha2digits
has changed. - the Russian and Catalan languages have not been ported yet.
We provide pre-compiled wheels for Linux, MacOS and Windows and for python 3.8 up to and including 3.13.
So all you need to do is this:
pip install text2num
# or, if using an `uv` project:
uv add text2num
Not every supported language is covered in these examples, but it gives you an idea.
French examples:
>>> from text_to_num import text2num
>>> text2num('quatre-vingt-quinze', "fr")
95
>>> text2num('nonante-cinq', "fr")
95
>>> text2num('mille neuf cent quatre-vingt dix-neuf', "fr")
1999
>>> text2num('dix-neuf cent quatre-vingt dix-neuf', "fr")
1999
>>> text2num("cinquante et un million cinq cent soixante dix-huit mille trois cent deux", "fr")
51578302
>>> text2num('mille mille deux cents', "fr")
Traceback (most recent call last):
...
ValueError: invalid literal for text2num: 'mille mille deux cents'
English examples:
>>> from text_to_num import text2num
>>> text2num("fifty-one million five hundred seventy-eight thousand three hundred two", "en")
51578302
>>> text2num("eighty-one", "en")
81
Spanish examples:
>>> from text_to_num import text2num
>>> text2num("ochenta y uno", "es")
81
>>> text2num("nueve mil novecientos noventa y nueve", "es")
9999
>>> text2num("cincuenta y tres millones doscientos cuarenta y tres mil setecientos veinticuatro", "es")
53243724
Portuguese examples:
>>> from text_to_num import text2num
>>> text2num("trinta e dois", "pt")
32
>>> text2num("mil novecentos e seis", "pt")
1906
>>> text2num("vinte e quatro milhões duzentos mil quarenta e sete", "pt")
24200047
German examples:
>>> from text_to_num import text2num
>>> text2num("einundfünfzigmillionenfünfhundertachtundsiebzigtausenddreihundertzwei", "de")
51578302
>>> text2num("ein und achtzig", "de")
81
Any numbers, even ordinals.
French:
>>> from text_to_num import alpha2digit
>>> sentence = (
... "Huit cent quarante-deux pommes, vingt-cinq chiens, mille trois chevaux, "
... "douze mille six cent quatre-vingt-dix-huit clous.\n"
... "Quatre-vingt-quinze vaut nonante-cinq. On tolère l'absence de tirets avant les unités : "
... "soixante seize vaut septante six.\n"
... "Nombres en série : douze, quinze, zéro zéro quatre, vingt, cinquante-deux, cent trois, cinquante deux, "
... "trente et un.\n"
... "Ordinaux: cinquième troisième vingt et unième centième mille deux cent trentième.\n"
... "Décimaux: douze virgule quatre-vingt dix-neuf, cent vingt virgule zéro cinq ; "
... "mais soixante zéro deux."
... )
>>> print(alpha2digit(sentence, "fr"))
842 pommes, 25 chiens, 1003 chevaux, 12698 clous.
95 vaut 95. On tolère l'absence de tirets avant les unités : 76 vaut 76.
Nombres en série : 12, 15, 004, 20, 52, 103, 52, 31.
Ordinaux: 5ème 3ème 21ème 100ème 1230ème.
Décimaux: 12,99, 120,05 ; mais 60 02.
>>> sentence = "Cinquième premier deuxième troisième vingt et unième centième mille deux cent trentième."
>>> print(alpha2digit(sentence, "fr"))
5ème 1er 2ème 3ème 21ème 100ème 1230ème.
English:
>>> from text_to_num import alpha2digit
>>> text = "On May twenty-third, I bought twenty-five cows, twelve chickens and one hundred twenty five point four zero kg of potatoes."
>>> alpha2digit(text, "en")
'On May 23rd, I bought 25 cows, 12 chickens and 125.40 kg of potatoes.'
>>> alpha2digit("I finished the race in the twelfth position!", "en")
'I finished the race in the 12th position!'
Spanish:
>>> from text_to_num import alpha2digit
>>> text = "Compramos veinticinco vacas, doce gallinas y ciento veinticinco coma cuarenta kg de patatas."
>>> alpha2digit(text, "es")
'Compramos 25 vacas, 12 gallinas y 125,40 kg de patatas.'
>>> text = "Compramos veinticinco vacas, doce gallinas y ciento veinticinco punto cuarenta kg de patatas."
>>> alpha2digit(text, "es")
'Compramos 25 vacas, 12 gallinas y 125.40 kg de patatas.'
>>> text = "Ella ha quedado tercera"
>>> alpha2digit(text, "es", threshold=0)
'Ella ha quedado 3ª'
Portuguese:
>>> from text_to_num import alpha2digit
>>> text = "Comprámos vinte e cinco vacas, doze galinhas e cento e vinte e cinco vírgula quarenta kg de batatas."
>>> alpha2digit(text, "pt")
'Comprámos 25 vacas, 12 galinhas e 125,40 kg de batatas.'
>>> text = "Ordinais: quinto, terceiro, vigésima, vigésimo primeiro, centésimo quarto"
>>> alpha2digit(text, "pt")
'Ordinais: 5º, 3º, 20ª, 21º, 104º'
German:
>>> from text_to_num import alpha2digit
>>> text = "Ich habe fünfundzwanzig Kühe, zwölf Hühner und einhundertfünfundzwanzig kg Kartoffeln gekauft."
>>> alpha2digit(text, "de")
'Ich habe 25 Kühe, 12 Hühner und 125 kg Kartoffeln gekauft.'
>>> text = "Die Telefonnummer lautet dreiunddreißig neun sechzig null sechs zwölf einundzwanzig."
>>> alpha2digit(text, "de")
'Die Telefonnummer lautet 33 9 60 06 12 21.'
>>> text = "Der zweiundzwanzigste Januar zweitausendzweiundzwanzig."
>>> alpha2digit(text, "de")
'Der 22. Januar 2022.'
>>> text = "Es ist ein Buch mit dreitausend Seiten aber nicht das erste."
>>> alpha2digit(text, "de", threshold=0)
'Es ist 1 Buch mit 3000 Seiten aber nicht das 1..'
>>> text = "Pi ist drei Komma eins vier und so weiter, aber nicht drei Komma vierzehn :-p"
>>> alpha2digit(text, "de", threshold=0)
'Pi ist 3,14 und so weiter, aber nicht 3 Komma 14 :-p'
Imagine that we have an ASR application that returns a transcript as a list of tokens (text, start timestamp, end timestamp) where the timestamps are integers representing milliseconds relative to the beginning of the speech.
from text_to_num import (Token, find_numbers)
class DecodedWord(Token):
def __init__(self, text, start, end):
self._text = text
self.start = start
self.end = end
def text(self):
return self._text
def nt_separated(self, previous):
# we consider a voice gap of more that 100 ms as significant
return self.start - previous.end > 100
# Let's simulate ASR output
stream = [
DecodedWord("We", 0, 100),
DecodedWord("have", 100, 200),
DecodedWord("respectively", 200, 400),
DecodedWord("twenty", 400, 500),
DecodedWord("nine", 610, 700),
DecodedWord("and", 700, 800),
DecodedWord("thirty", 800, 900),
DecodedWord("four", 950, 1000),
DecodedWord("dollars", 1010, 1410)
]
occurences = find_numbers(stream, "en")
for num in occurences:
print(f"found number {num.text} ({num.value}) at range [{num.start}, {num.end}] in the stream")
When executed, that code snippet prints::
found number 20 (20.0) at range [3, 4] in the stream
found number 9 (9.0) at range [4, 5] in the stream
found number 34 (34.0) at range [6, 8] in the stream
Read the complete documentation on ReadTheDocs.
Join us on https://github.com/allo-media/text2num