labels2tables extracts keywords from a bibtex file, and uses them to generate an academic summary table comparing the articles.
Input:
@article{duch_quantifying_2010,
keywords = {game:soccer, model:network:centrality, open-access}}
@article{yamamoto_common_2011,
keywords = {game:soccer, model:network:scale-free, open-access}}
@article{yaari_hot_2011,
keywords = {game:basketball, model:sequence, open-access}}
Transformation:
import labels2tables
labels = labels2tables.bib2labels("examples/sport.in.bib")
labels2tables.labels2txt(labels, "examples/sport.out.txt")
Output:
========================================================
game model open-access reference
========================================================
soccer network
centrality Y duch_quantifying_2010
scale-free Y yamamoto_common_2011
basketball sequence Y yaari_hot_2011
========================================================
The intermediate labels format encodes table data using standard Python dictionaries, lists and tuples. See examples/*.spec.txt for example tables, and how to describe them as a labels dictionary.
Powered by bibtexparser