Skip to content

aphoticshaman/semiotic-arc

Repository files navigation

Semiotic Reasoning for Abstract Visual Tasks

A dual-channel cognitive architecture for ARC-AGI and related benchmarks.


Core Thesis

Human visual reasoning exploits two parallel systems:

  1. Evolved patterns — Phylogenetically hardwired detectors (edges, symmetry, enclosure, faces)
  2. Conditioned symbols — Ontogenetically learned associations (color meanings, spatial semantics)

Furthermore, visual puzzles are compressed reality models — they simulate physical, mathematical, or social phenomena.

ARC puzzles exploit both channels. Machines fail because they lack explicit access.

We provide that access.


The Insight

"I am not smart. I just question things everyone else accepts."

We questioned the assumption that ARC puzzles are arbitrary transformations.

They're not. They're reality simulations.


Architecture

┌─────────────────────────────────────────────────────────────────┐
│                    SEMIOTIC REASONING ENGINE                    │
├─────────────────────────────────────────────────────────────────┤
│                                                                 │
│  INPUT: Grid + Training Examples                                │
│     │                                                           │
│     ▼                                                           │
│  ┌─────────────────────────────────────────────────────────┐   │
│  │ EVOLVED PATTERN DETECTION                                │   │
│  │ • Symmetry (bilateral, radial)                          │   │
│  │ • Enclosure (containment)                               │   │
│  │ • Proximity (grouping)                                  │   │
│  │ • Edges (boundaries)                                    │   │
│  └─────────────────────────────────────────────────────────┘   │
│     │                                                           │
│     ▼                                                           │
│  ┌─────────────────────────────────────────────────────────┐   │
│  │ CONDITIONED SYMBOL RECOGNITION                           │   │
│  │ • Color semantics (red=danger, blue=calm)               │   │
│  │ • Position semantics (center=important)                 │   │
│  │ • Quantity semantics (1=unique, 2=pair)                 │   │
│  └─────────────────────────────────────────────────────────┘   │
│     │                                                           │
│     ▼                                                           │
│  ┌─────────────────────────────────────────────────────────┐   │
│  │ REALITY MODEL INFERENCE                                  │   │
│  │ • Physical: gravity, fluid, collision                   │   │
│  │ • Mathematical: sets, graphs, sequences                 │   │
│  │ • Cognitive: attention, memory, analogy                 │   │
│  └─────────────────────────────────────────────────────────┘   │
│     │                                                           │
│     ▼                                                           │
│  OUTPUT: Transformation Rule                                    │
│                                                                 │
└─────────────────────────────────────────────────────────────────┘

Repository Structure

semiotic-arc/
├── ATLAS_TAXONOMY.md      # 16 abstraction types (ARC covers ~28%)
├── POD_METHODOLOGY.md     # Formal knowledge generation methodology
├── atlas_gen.py           # Meta-benchmark generator (working code)
├── src/
│   ├── rust/              # Core reasoning engine (Rust, 16 modules)
│   │   └── src/
│   │       ├── lib.rs             # Main engine (13-layer cognitive pipeline)
│   │       ├── grid.rs            # 64x64 packed 4-bit grid representation
│   │       ├── operator.rs        # GridOperator trait, compose(), invert()
│   │       ├── hypothesis.rs      # Beam search over operator compositions
│   │       ├── grammar.rs         # Formal DSL grammar for grid operations
│   │       ├── prior_bank.rs      # Amortized inference via compiled priors
│   │       ├── discrimination.rs  # Hypothesis space partitioning
│   │       ├── simulator.rs       # World simulation for off-policy planning
│   │       ├── planner.rs         # A* planning with viability tracking
│   │       ├── memory.rs          # 3-tier memory (Working/Episodic/Semantic)
│   │       ├── cognitive_regulation.rs  # CBT/DBT-inspired self-healing
│   │       ├── critical_analysis.rs     # Adversarial trap detection
│   │       └── [more...]
│   └── python/            # Training data generation
├── research/              # Research materials
│   ├── LLM_SYSTEM_PROMPTS.py       # 30+ system prompts for game-playing agents
│   ├── TACTICAL_GUIDE.md           # Semiotic analysis methodology
│   ├── CROSS_DOMAIN_INSIGHTS.md    # 55 eigenvalue-based insights
│   ├── MULTI_MODEL_PROMPTS.md      # Prompts for multi-model coordination
│   ├── ARC_AGI_3_INSIGHTS.md       # Interactive game architecture notes
│   ├── ANTI_CHEAT_ANALYSIS.md      # Human-like agent behavior patterns
│   └── ratchet_loss.py             # Asymmetric ratcheting loss
├── data/
│   └── annotations/       # Semiotic puzzle annotations
├── prompts/
│   └── system_prompt.md
├── docs/
│   └── METHODOLOGY.md     # Field manual
└── MANIFEST.md            # File inclusion manifest

Quick Start

Run the Rust engine

cd src/rust
cargo test
cargo build --release

Generate training data

cd src/python
python generate_semiotic_training.py

The Dataset

This is where you come in.

We provide the methodology. We provide the annotation schema. We provide seed examples.

You provide the annotations.

Every ARC puzzle annotated with semiotic analysis is ammunition.

See data/annotations/SCHEMA.md for the annotation format.


Contributing

  1. Fork this repository
  2. Annotate puzzles using the schema
  3. Submit a pull request
  4. Get credited in CITATION.cff

We don't win alone.


Citation

@software{semiotic_arc_2024,
  author = {Cardwell, Ryan and {Crystalline Labs}},
  title = {Semiotic Reasoning for Abstract Visual Tasks},
  year = {2024},
  url = {https://github.com/crystalline-labs/semiotic-arc}
}

License

MIT License. See LICENSE.


References

  • Chollet, F. (2019). On the Measure of Intelligence. arXiv:1911.01547
  • Peirce, C.S. (1931-58). Collected Papers of Charles Sanders Peirce
  • Gibson, J.J. (1979). The Ecological Approach to Visual Perception
  • Spelke, E.S. (2007). Core Knowledge. Developmental Science, 10(1)
  • Lake, B.M. et al. (2017). Building Machines That Learn and Think Like People

This is asymmetric warfare. The insight is free. Use it.

About

Asymmetric operator package for ARC-AGI-3

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •