Skip to content

arthurkorte/MTMM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 

Repository files navigation

MTMM - A mixed-model approach for genome-wide association studies of correlated traits in structured populations

Introduction

The MTMM function as published in Nature Genetics currently don't support estimates on missing data and replicates. This is work in progress and will be accordingly updated here.

For questions and comments feel free to contact me: arthur.korte@gmail.com

Latest update on Aug,16st 2019: New scripts now support the use of ASREML-R version 4. As there have been major changes between the latest ASREML versions, the old scripts will only run with version 3, and for the use of version 4 there is a whole new set of functions provided.

Additional updates include estimation of effect sizes and SE for the MTMM, the output of only the variance components and the handling of heterozygous genotype data. Also some updates on the visualization of the results

How to use

# new workflow compatible with ASREML-R 4 is described in the mtmm_workflow_as4.r script
# This script is optimized for data from the Arabidopsis 1001 Genomes project.

# EXAMPLE to run the data

source('scripts/prepare_mtmm.r')
load('data/MTMM_SAMPLE_DATA.Rdata')

# generate estimates of the variance components 
mtmm_estimates(Y,k=2,l=3,K,method='default',only.vca=FALSE) 
mydata<-'SD_SDV_mtmm_estimates.rda'
load(mydata)
# Now perform GWAS with this estimates 
results<-mtmm_part2(X,incl.singleGWAS=T)
plot_mtmm(name2='mtmm.pdf',incl.singleGWAS=T)

# all output data can also be found in the data folder

# old workflow with ASREML-R 3
# Load libraries and source needed functions
# The AsREML package needs a valid license that can be obtained at  http://www.vsni.co.uk/software/asreml

library(lattice)
library(asreml)

# msm and nadiv librarys are used to estimate SE of the correlation estimates, only used if run=FALSE 
#library(msm)
#library(nadiv)

source('mtmm_function.r')
source('emma.r')

# load your data (Phenotype(Y),Genotype(X) and Kinship(K))
# note you can calculate K using the emma package K<-emma.kinship(t(X)), make sure to set colnames(K)=rownames(K)=rownames(X)

# alternativley load the sample data
load('data/MTMM_SAMPLE_DATA.Rdata')

# different options include method(default or errorcorrelation, include.single.analysis, calculate.effect.size (if TRUE, #analysis is more time consuming) default for X is binary coding of 0 and 1, if your data are code  0,1 and 2 use #gen.data='heterozygot',  run=FALSE will not perform the GWAS, but only output the correlation estimates (fast)
mtmm(Y,X,K,method='default',include.single.analysis=T,calculate.effect.size=T,gen.data='binary',exclude=T,run=T)

# To only perform a Variance Coponent Analysis use the mtmm_estimate.r script with the flag only.vca=T set
VCA<-mtmm_estimates(Y,K=K,only.vca=T)

# the function outputs a list called results  ($phenotype ,$pvals, $statistics, $kinship)
output<-results$pvals

# manhattan plots
# default plots for include.single.analysis=T
par(mfrow=c(5,1),mar=c(3, 4, 1, 4))
plot_gwas(output,h=8)
plot_gwas(output,h=9)
plot_gwas(output,h=10)
plot_gwas(output,h=11)
plot_gwas(output,h=12)

#qq plots
par(mfrow=c(1,1),mar=c(3, 4, 1, 4))
qq_plot_all(output)

Poster

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages