-
-
Notifications
You must be signed in to change notification settings - Fork 176
Lasso Regression #306
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
yfnaji
wants to merge
4
commits into
avhz:main
Choose a base branch
from
yfnaji:lasso
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Lasso Regression #306
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,290 @@ | ||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
| // RustQuant: A Rust library for quantitative finance tools. | ||
| // Copyright (C) 2023 https://github.com/avhz | ||
| // Dual licensed under Apache 2.0 and MIT. | ||
| // See: | ||
| // - LICENSE-APACHE.md | ||
| // - LICENSE-MIT.md | ||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
|
|
||
| //! Module for Lasso algorithms. | ||
|
|
||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
| // IMPORTS | ||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
|
|
||
| use nalgebra::{DMatrix, DVector}; | ||
| use RustQuant_error::RustQuantError; | ||
|
|
||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
| // STRUCTS, ENUMS, AND TRAITS | ||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
|
|
||
| /// Struct to hold the input data for a Lasso regression. | ||
| #[allow(clippy::module_name_repetitions)] | ||
| #[derive(Clone, Debug)] | ||
| pub struct LassoInput<T> { | ||
| /// The features matrix. | ||
| pub x: DMatrix<T>, | ||
| /// The output data vector, also known as the response vector. | ||
| pub y: DVector<T>, | ||
| /// The regularization parameter. | ||
| pub lambda: T, | ||
| /// Include the intercept. | ||
| pub fit_intercept: bool, | ||
| /// The maximum number of iterations for training. | ||
| pub max_iter: usize, | ||
| /// The tolerance for the convergence. | ||
| pub tolerance: T, | ||
| } | ||
|
|
||
| /// Struct to hold the output data for lasso. | ||
| #[allow(clippy::module_name_repetitions)] | ||
| #[derive(Clone, Debug)] | ||
| pub struct LassoOutput<T> { | ||
| /// The intercept of the lasso regression, | ||
| pub intercept: T, | ||
| /// The coefficients of the lasso regression, | ||
| pub coefficients: DVector<T>, | ||
| } | ||
|
|
||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
| // IMPLEMENTATIONS | ||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
|
|
||
| impl LassoInput<f64> { | ||
| /// Create a new `LassoInput` struct. | ||
| #[must_use] | ||
| pub fn new( | ||
| x: DMatrix<f64>, | ||
| y: DVector<f64>, | ||
| lambda: f64, | ||
| fit_intercept: bool, | ||
| max_iter: usize, | ||
| tolerance: f64, | ||
| ) -> Self { | ||
| Self { x, y, lambda, fit_intercept, max_iter, tolerance } | ||
| } | ||
|
|
||
| /// Fits a Lasso regression to the input data. | ||
| /// Returns the intercept and coefficients. | ||
| /// The intercept is the first value of the coefficients. | ||
| pub fn fit(&self) -> Result<LassoOutput<f64>, RustQuantError> { | ||
| let n_cols = self.x.ncols(); | ||
| let n_rows = self.x.nrows() as f64; | ||
| let mut features_matrix = self.x.clone(); | ||
| let mut residuals = self.y.clone(); | ||
| let feature_means = DVector::from_iterator( | ||
| self.x.ncols(), | ||
| (0..self.x.ncols()).map(|j| self.x.column(j).mean()) | ||
| ); | ||
|
|
||
| if self.fit_intercept { | ||
|
|
||
| features_matrix = self.x.clone(); | ||
| for j in 0..self.x.ncols() { | ||
| let mean = feature_means[j]; | ||
| for i in 0..self.x.nrows() { | ||
| features_matrix[(i, j)] -= mean; | ||
| } | ||
| } | ||
| residuals -= DVector::from_element(self.x.nrows(), self.y.mean()); | ||
| } | ||
|
|
||
| let mut coefficients = DVector::<f64>::zeros(n_cols); | ||
|
|
||
| for _ in 0..self.max_iter { | ||
| let mut max_delta: f64 = 0.0; | ||
| for j in 0..n_cols { | ||
|
|
||
| let feature_vals_col_j = features_matrix.column(j); | ||
| let col_norm: f64 = feature_vals_col_j.dot(&feature_vals_col_j); | ||
| let rho: f64 = (residuals.dot(&feature_vals_col_j) + coefficients[j] * col_norm) / n_rows; | ||
|
|
||
| let new_coefficient_j: f64 = if rho < -self.lambda { | ||
| (rho + self.lambda) / (col_norm / n_rows) | ||
| } else if rho > self.lambda { | ||
| (rho - self.lambda) / (col_norm / n_rows) | ||
| } else { | ||
| 0.0 | ||
| }; | ||
|
|
||
| let delta: f64 = new_coefficient_j - coefficients[j]; | ||
| if delta.abs() > 0.0 { | ||
| residuals -= &feature_vals_col_j * delta; | ||
Check warningCode scanning / clippy needlessly taken reference of left operand Warning
needlessly taken reference of left operand
|
||
| } | ||
| coefficients[j] = new_coefficient_j; | ||
| max_delta = max_delta.max(delta.abs()); | ||
| } | ||
|
|
||
| if max_delta < self.tolerance { | ||
| break; | ||
| } | ||
| } | ||
|
|
||
| let intercept: f64 = if self.fit_intercept { | ||
| self.y.mean() - feature_means.dot(&coefficients) | ||
| } else { | ||
| 0.0 | ||
| }; | ||
| coefficients = coefficients.insert_row(0, intercept); | ||
|
|
||
| Ok(LassoOutput { | ||
| intercept, | ||
| coefficients, | ||
| }) | ||
| } | ||
| } | ||
|
|
||
| impl LassoOutput<f64> { | ||
| /// Predicts the output for the given input data. | ||
| pub fn predict(&self, input: DMatrix<f64>) -> Result<DVector<f64>, RustQuantError> { | ||
| let intercept = DVector::from_element( | ||
| input.nrows(), | ||
| self.intercept | ||
| ); | ||
| let coefficients = self.coefficients.clone().remove_row(0); | ||
| let predictions = input * coefficients + intercept; | ||
| Ok(predictions) | ||
| } | ||
| } | ||
|
|
||
|
|
||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
| // UNIT TESTS | ||
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
|
|
||
| #[cfg(test)] | ||
| mod tests_lasso_regression { | ||
| use super::*; | ||
| use RustQuant_utils::assert_approx_equal; | ||
|
|
||
| struct DataForTests { | ||
| training_set: DMatrix<f64>, | ||
| testing_set: DMatrix<f64>, | ||
| response: DVector<f64>, | ||
| } | ||
|
|
||
| fn setup_test() -> DataForTests { | ||
| DataForTests { | ||
| training_set: DMatrix::from_row_slice( | ||
| 4, | ||
| 3, | ||
| &[ | ||
| -0.083_784_355, -0.633_485_70, -0.399_266_60, | ||
| -0.982_943_745, 1.090_797_46, -0.468_123_05, | ||
| -1.875_067_321, -0.913_727_27, 0.326_962_08, | ||
| -0.186_144_661, 1.001_639_71, -0.412_746_90], | ||
| ), | ||
|
|
||
| testing_set: DMatrix::from_row_slice( | ||
| 4, | ||
| 3, | ||
| &[ | ||
| 0.562_036_47, 0.595_846_45, -0.411_653_01, | ||
| 0.663_358_26, 0.452_091_83, -0.294_327_15, | ||
| -0.602_897_28, 0.896_743_96, 1.218_573_96, | ||
| 0.698_377_69, 0.572_216_51, 0.244_111_43], | ||
| ), | ||
|
|
||
| response: DVector::from_row_slice( | ||
| &[ | ||
| -0.445_151_96, | ||
| -1.847_803_64, | ||
| -0.628_825_31, | ||
| -0.861_080_69 | ||
| ] | ||
| ), | ||
| } | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_lasso_without_intercept() -> Result<(), RustQuantError> { | ||
|
|
||
| let data: DataForTests = setup_test(); | ||
|
|
||
| let input: LassoInput<f64> = LassoInput { | ||
| x: data.training_set, | ||
| y: data.response, | ||
| lambda: 0.01, | ||
| fit_intercept: false, | ||
| max_iter: 1000, | ||
| tolerance: 1e-4, | ||
| }; | ||
|
|
||
| let output: LassoOutput<f64> = input.fit()?; | ||
| let predictions = output.predict(data.testing_set)?; | ||
|
|
||
| for (i, coefficient) in output.coefficients.iter().enumerate() { | ||
| assert_approx_equal!( | ||
| coefficient, | ||
| &[ | ||
| 0.0, | ||
| 0.743_965_706_491_596_7, | ||
| -0.304_713_846_510_641_43, | ||
| 1.355_162_653_724_116_22, | ||
| ][i], | ||
Check warningCode scanning / clippy float has excessive precision Warning
float has excessive precision
|
||
| f64::EPSILON | ||
| ); | ||
| } | ||
|
|
||
| for (i, pred) in predictions.iter().enumerate() { | ||
| assert_approx_equal!( | ||
| pred, | ||
| &[ | ||
| -0.321_283_589_676_737_6, | ||
| -0.04310400559445471, | ||
| 0.9295807191488583, | ||
| 0.6760174510230131 | ||
| ][i], | ||
| f64::EPSILON | ||
| ); | ||
| } | ||
| Ok(()) | ||
| } | ||
|
|
||
| #[test] | ||
| fn test_lasso_with_intercept() -> Result<(), RustQuantError> { | ||
|
|
||
| let data: DataForTests = setup_test(); | ||
|
|
||
| let input: LassoInput<f64> = LassoInput { | ||
| x: data.training_set, | ||
| y: data.response, | ||
| lambda: 0.01, | ||
| fit_intercept: true, | ||
| max_iter: 1000, | ||
| tolerance: 1e-4, | ||
| }; | ||
|
|
||
| let output: LassoOutput<f64> = input.fit()?; | ||
| let predictions = output.predict(data.testing_set)?; | ||
|
|
||
| for (i, coefficient) in output.coefficients.iter().enumerate() { | ||
| assert_approx_equal!( | ||
| coefficient, | ||
| &[ | ||
| 0.009_633_706_736_496_328, | ||
| 0.750_479_303_541_854_1, | ||
| -0.301_997_087_876_784_5, | ||
| 1.373_605_833_196_545_3, | ||
| ][i], | ||
| f64::EPSILON | ||
| ); | ||
| } | ||
|
|
||
| for (i, pred) in predictions.iter().enumerate() { | ||
| assert_approx_equal!( | ||
| pred, | ||
| &[ | ||
| -0.313_962_423_203_417_3, | ||
| -0.033_349_554_520_968_38, | ||
| 0.960_198_011_081_136_2, | ||
| 0.696_256_873_679_798_4, | ||
| ][i], | ||
| f64::EPSILON | ||
| ); | ||
| } | ||
| Ok(()) | ||
| } | ||
| } | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Check warning
Code scanning / clippy
needlessly taken reference of left operand Warning