-
-
Notifications
You must be signed in to change notification settings - Fork 1
Numerical Analysis
Göran Bäcklund edited this page Feb 2, 2026
·
6 revisions
Factorial
int result = 5.Factorial(); // 120Root Finding (Newton–Raphson)
Func<double, double> func = x => Math.Pow(x, 2) - 4;
double root = func.NewtonRaphson(); // 2Func<double, double> f = x => Math.Pow(x, 2);
Func<double, double> g = x => 4 * x - 3;
var result = f.Derivate(g, 1);Supports Chain, Product, and Quotient rules via:
var result = f.Derivate(g, Numerics.Enums.DerivateOperator.Product);Multiple variables:
Func<double[], double> func = vars => vars[0] * vars[1];
var dfdx = func.Derivate(new double[] { 2, 3 }, index: 0);Or with vectors:
Func<Vector, double> func = v => v.x * v.y;
var dfdx = func.Derivate(new Vector(2, 3, 0), Cartesian.X);Derivate series:
Func<double, double> displacement = t => 9.81 * Math.Pow(t, 2) / 2;
var velocity = displacement.GetSeries(0, 10, 1000).Derivate();Trapezoidal rule:
Func<double, double> f = x => Math.Sin(x);
double integral = f.Integrate(0, Math.PI);Integrate a series or timeseries:
List<TimeSerie> ts = ...;
double total = ts.Integrate();Monte Carlo Integration
Func<(double x, double y), double> func = p => p.x * p.y;
double result = func.Integrate((0, 1), (0, 1));var a = new ComplexNumber(3, 2);
var b = new ComplexNumber(5, 3);
var sum = a + b;
var product = a * b;
var power = a.Pow(2); // 5 + 12iExponential:
new ComplexNumber(0, Math.PI).Exponential(); // -1var a = new Vector(5, 3, 0);
var b = new Vector(2, 6, 0);
var dot = a.Dot(b);
var cross = a.Cross(b);From spherical coordinates:
var v = Vector.FromSphericalCoordinates(radius, inclination, azimuth);Vector of any length:
double[] ydata =
{
1,3,5,7,9,11,13,15,17,19
};
var y = new VectorN(ydata);var A = new Matrix(new double[,] { { 1, 3, 7 }, { 5, 2, 9 } });
var transpose = A.Transpose();
var det = A.Determinant();
var inv = A.Inverse();
Arithmetic:
var B = new Matrix(new double[,] { { 2, 5, 1 }, { 4, 3, 7 } });
var sum = A + B;
var product = A * B;
With vector:
var x = new Vector(2, 1, 3);
var y = A * x;var tensor = new Tensor(2, 3);
tensor[0, 0] = 1;
tensor[0, 1] = 2;
tensor[0, 2] = 3;
tensor[1, 0] = 4;
tensor[1, 1] = 5;
tensor[1, 2] = 6;
tensor.Fill(10);
var tensorB = new Tensor(2, 3);
tensorB.Fill(5);
var sum = tensor + tensorB;
var diff = tensor - tensorB;
var prod = tensor * tensorB;
var div = tensor / tensorB;
var tensor1D = new Tensor(3);
tensor1D.Values[0] = 1;
tensor1D.Values[1] = 2;
tensor1D.Values[2] = 3;
var tensor1D2 = new Tensor(3);
tensor1D2.Values[0] = 4;
tensor1D2.Values[1] = 5;
tensor1D2.Values[2] = 6;
double dot = tensor1D.Dot(tensor1D2); // 1*4 + 2*5 + 3*6 = 32Gradient
Func<Vector, double> f = p => Math.Pow(p.x, 2) * Math.Pow(p.y, 3);
var grad = f.Gradient((1, -2, 0));Divergence
var field = new VectorField(p => Math.Sin(p.x * p.y),
p => Math.Cos(p.x * p.y),
p => Math.Exp(p.z));
double div = field.Divergence((1, 2, 2));Curl
var field = new VectorField(p => p.y, p => -p.x, p => 0);
var curl = field.Curl((1, 4, 2));FFT
Func<double, double> f = t => Math.Exp(-t * t / 0.02);
var freq = f.FastFouriertransform(-0.5, 0.5, 100)
.ToFrequencyResolution(100);Laplace Transform
double result = f.LaplaceTransform(2.0);Runge–Kutta (RK4)
Func<(double t, double y), double> f = v => Math.Tan(v.y) + 1;
var result = f.RungeKutta(1, 1.1, 0.025, 1);var result = A.LinearSystemSolver(b);
var eigenValues = A.EigenValues();var matrix = new Matrix(new double[,] { { 1, -2, 3 }, { -1, 1, -2 }, { 2, -1, -1 } });
var vector = new VectorN(new double[] { 7, -5, 4 });
var result = matrix.LinearSystemSolver(vector);