Skip to content

cherenkov-plenoscope/sparse_numeric_table

Repository files navigation

Sparse Numeric Table

TestStatus PyPiStatus BlackStyle BlackPackStyle MITLicenseBadge

Query, write, read, and dynamically grow a sparse numeric table. I do love pandas.DataFrame and I do love numpy.recarray. But when the table is sparse and still won't fit into your memory one needs to combine the best of pandas, numpy and zipfile to get the job done. This is the Sparse Numeric Table.

Install

pip install sparse-numeric-table-sebastian-achim-mueller

Test

pytest .

Fileformat

Efficient write and read using binary blocks (numpy dumps) in a zip file. On read, you only need to read the columns and indices you need. No need to read the entire file. Files can be explored with any zip file reader.

Usage

See ./sparse_numeric_table/tests for examples.

1st) You create a dict representing the dtypes of your table. Columns which only appear together are bundeled into a level . Each level has an index to merge and join with other levels.

my_table_dtypes = {
    "A": [
        ("a", "<u8"),
        ("b", "<f8"),
        ("c", "<f4"),
    ],
    "B": [
        ("g", "<i8"),
    ],
    "C": [
        ("m", "<i2"),
        ("n", "<u8"),
    ],
}

Here A , B , and C are the level keys. a, ... , n are the column keys.

2nd) You create/read/write the table.

 A             B         C

 idx a b c     idx g     idx m n
 ___ _ _ _     ___ _
|_0_|_|_|_|   |_0_|_|
|_1_|_|_|_|
|_2_|_|_|_|    ___ _
|_3_|_|_|_|   |_3_|_|
|_4_|_|_|_|   |_4_|_|    ___ _ _
|_5_|_|_|_|   |_5_|_|   |_5_|_|_|
|_6_|_|_|_|
|_7_|_|_|_|
|_8_|_|_|_|    ___ _
|_9_|_|_|_|   |_9_|_|
|10_|_|_|_|   |10_|_|
|11_|_|_|_|    ___ _     ___ _ _
|12_|_|_|_|   |12_|_|   |12_|_|_|
|13_|_|_|_|    ___ _
|14_|_|_|_|   |14_|_|

About

Query, write, and read sparse numeric tables in python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages