Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 2 additions & 6 deletions keras/src/backend/openvino/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,13 +97,9 @@ def align_operand_types(x1, x2, op_name):
# create ov.Output (symbolic OpenVINO tensor)
# for different input `x`
def get_ov_output(x, ov_type=None):
if isinstance(x, float):
if isinstance(x, (float, int)):
if ov_type is None:
ov_type = Type.f32
x = ov_opset.constant(x, ov_type).output(0)
elif isinstance(x, int):
if ov_type is None:
ov_type = Type.i32
ov_type = Type.f32 if isinstance(x, float) else Type.i32
x = ov_opset.constant(x, ov_type).output(0)
elif isinstance(x, np.ndarray):
if x.dtype == np.dtype("bfloat16"):
Expand Down
45 changes: 32 additions & 13 deletions keras/src/backend/openvino/numpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
from keras.src.backend.openvino.core import convert_to_tensor
from keras.src.backend.openvino.core import get_ov_output
from keras.src.backend.openvino.core import ov_to_keras_type
from functools import lru_cache


def add(x1, x2):
Expand Down Expand Up @@ -585,30 +586,34 @@ def bincount(x, weights=None, minlength=0, sparse=False):
raise ValueError("Unsupported value `sparse=True`")
x = get_ov_output(x)
x_type = x.get_element_type()

# Cache scalar constants by type (greatly reduces overhead)
const_minus_one = _ov_const(-1, x_type)
const_one = _ov_const(1, x_type)
const_zero = _ov_const(0, x_type)
scalar_shape = _ov_const_empty(x_type)

shape_x = ov_opset.shape_of(x, "i64").output(0)
rank_x = ov_opset.shape_of(shape_x, "i64").output(0)
rank_x = ov_opset.convert(rank_x, x_type).output(0)
scalar_shape = ov_opset.constant([], x_type).output(0)
rank_x = ov_opset.reshape(rank_x, scalar_shape, False).output(0)
const_minus_one = ov_opset.constant(-1, x_type).output(0)
rank_minus_one = ov_opset.add(rank_x, const_minus_one).output(0)
minlength = get_ov_output(minlength)
minlength = ov_opset.convert(minlength, x_type).output(0)
const_one = ov_opset.constant(1, x_type).output(0)
const_zero = ov_opset.constant(0, x_type).output(0)

minlength_tensor = get_ov_output(minlength)
minlength_tensor = ov_opset.convert(minlength_tensor, x_type).output(0)

max_element = ov_opset.reduce_max(x, const_zero, keep_dims=False).output(0)
depth = ov_opset.add(max_element, const_one).output(0)
depth = ov_opset.maximum(depth, minlength).output(0)
depth_scalar = ov_opset.reduce_max(
depth, const_zero, keep_dims=False
).output(0)
depth = ov_opset.maximum(depth, minlength_tensor).output(0)
depth_scalar = ov_opset.reduce_max(depth, const_zero, keep_dims=False).output(0)

one_hot = ov_opset.one_hot(
x, depth_scalar, const_one, const_zero, axis=-1
).output(0)
if weights is not None:
weights = get_ov_output(weights)
weights_type = weights.get_element_type()
weights_new = ov_opset.reshape(weights, [-1, 1], False).output(0)
weights_tensor = get_ov_output(weights)
weights_type = weights_tensor.get_element_type()
weights_new = ov_opset.reshape(weights_tensor, [-1, 1], False).output(0)
one_hot = ov_opset.convert(one_hot, weights_type).output(0)
final_one_hot = ov_opset.multiply(one_hot, weights_new).output(0)
final_output = ov_opset.reduce_sum(
Expand Down Expand Up @@ -2550,3 +2555,17 @@ def argpartition(x, kth, axis=-1):
raise NotImplementedError(
"`argpartition` is not supported with openvino backend"
)


# Cache frequently used OpenVINO constant outputs for scalar values and empty-shapes per type
@lru_cache(maxsize=32)
def _ov_const(val, dtype):
return ov_opset.constant(val, dtype).output(0)

@lru_cache(maxsize=16)
def _ov_const_notype(val):
return ov_opset.constant(val).output(0)

@lru_cache(maxsize=32)
def _ov_const_empty(dtype):
return ov_opset.constant([], dtype).output(0)