Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks.(https://arxiv.org/abs/1703.07015)
- Python 3.6+
- Pytorch 1.0+
- numpy
Exchange Rate dataset:stock.shTraffic dataset:traffic.shSolar-Energy dataset:solar.shElectricity usage dataset:ele.sh
main.py
- --data DATA
location of the data file - -h --help
show this help message and exit - --model DATA
select the model: LSTNet, CNN, RNN or MHA_Net - --window WINDOW
window size (history size) - --horizon HORIZON
forecasting horizon(step) - --hidRNN HIDRNN
number of RNN hidden units each layer - --rnn_layers RNN_LAYERS
number of RNN hidden layers - --hidCNN HIDCNN
number of CNN hidden units (channels) - --CNN_kernel CNN_KERNEL
the kernel size of the CNN layers - --highway_window HIGHWAY_WINDOW
The window size of the highway component - -n_head N_HEAD
num of self attention heads - -d_k D_K
self attention key dimension - -d_v D_V
self attention value dimension - --clip CLIP
gradient clipping limit - --epochs EPOCHS
upper epoch limit - --batch_size N
batch_size - --dropout DROPOUT
dropout applied to layers (0 = no dropout) - --seed SEED
random seed - --log_interval N
report interval - --save SAVE
path to save the final model' - --cuda CUDA
whether to use cuda device - --optim OPTIM
optimizer method ,default 'adam' - --amsgrad AMSGRAD
whether to use amsgrad - --lr LR
learning rate - --skip SKIP
autoregression window size - --hidSkip HIDSKIP
skiphidden states dimension - --L1Loss L1LOSS
whether to use l1 loss function - --normalize NORMALIZE
whether to normalize the data - --output_fun OUTPUT_FUN
relu, tanh or sigmoid