Feature | Description | Technology Used | Performance |
---|---|---|---|
π₯ Live Digit Capture | Real-time webcam hand digit recording | OpenCV | 30+ FPS |
π§ CNN Classification | High-accuracy digit recognition | TensorFlow | 96% Accuracy |
β‘ Low-Latency | Fast processing pipeline | Python | <20ms/frame |
π Visual Feedback | On-screen predictions & FPS counter | OpenCV | 18ms render |
π¦ Easy Setup | One-command installation | pip | <1min |
Metric | Value | Details |
---|---|---|
Test Accuracy | 96.2% | MNIST test set |
Inference Speed | 8ms | NVIDIA RTX 3060 |
CPU Usage | 35-45% | Intel i7-11800H |
Memory Consumption | 380MB RAM | During operation |
Model Size | 2.1 MB | Optimized TensorFlow Lite |
Capability | This Project | Alternative Solutions |
---|---|---|
Real-Time Processing | β Yes | β No |
Webcam Support | β Yes | β Limited |
Pretrained Model | β Included | β Requires Download |
Open Source License | β MIT | β Proprietary |
Multi-Platform | β Win/Linux | β Windows-only |
Stage | Time Taken | Tools Used |
---|---|---|
1. Frame Capture | 2ms | OpenCV VideoCapture |
2. Preprocessing | 4ms | NumPy, OpenCV |
3. CNN Inference | 8ms | TensorFlow Lite |
4. Visualization | 4ms | OpenCV |
Total Latency | 18ms |
Note: All metrics measured on Intel i7-11800H + RTX 3060 system at 640x480 resolution
graph TD
A[Input Layer\n28x28 Grayscale] -->|Preprocessed\nImage| B[Conv2D\n32 filters]
B --> C[ReLU Activation]
C --> D[MaxPooling2D\n2x2]
D --> E[Conv2D\n64 filters]
E --> F[ReLU Activation]
F --> G[MaxPooling2D\n2x2]
G --> H[Flatten]
H --> I[Dense\n128 neurons]
I --> J[Dropout\n0.5]
J --> K[Output Layer\n10 neurons]
K --> L[Softmax\nClassification]
style A fill:#5e81ac,stroke:#4c566a,color:white
style B fill:#88c0d0,stroke:#4c566a
style C fill:#81a1c1,stroke:#4c566a
style D fill:#8fbcbb,stroke:#4c566a
style E fill:#88c0d0,stroke:#4c566a
style F fill:#81a1c1,stroke:#4c566a
style G fill:#8fbcbb,stroke:#4c566a
style H fill:#d08770,stroke:#4c566a
style I fill:#ebcb8b,stroke:#4c566a
style J fill:#e5e9f0,stroke:#4c566a
style K fill:#a3be8c,stroke:#4c566a
style L fill:#b48ead,stroke:#4c566a
git clone https://github.com/codewithcc/hand-digit-classifier.git
cd hand-digit-classifier
pip install -r requirements.txt
python main.py
pie title Test Set Accuracy (MNIST)
"Correct Predictions" : 96
"Incorrect Predictions" : 4