Skip to content
This repository was archived by the owner on Oct 16, 2025. It is now read-only.

dbsectrainer/AI-ML

AI/ML Learning Resources

License: MIT PRs Welcome Contributions Welcome

A comprehensive collection of resources for learning Artificial Intelligence (AI), Machine Learning (ML), and Natural Language Processing (NLP). This repository provides structured learning paths, practical examples, and curated resources for AI/ML practitioners at all levels.

⭐ Give a Star!

If you find this repository helpful or are using it to learn AI/ML development, please give it a star. Thanks!

πŸ“‹ Table of Contents

⚠️ Disclaimer

This repository aims to provide a structured learning path for AI/ML technology and its ecosystem. The content is designed to guide you in understanding core concepts and practical implementation, rather than promoting specific frameworks or technologies. Remember that AI/ML field evolves rapidly - always verify information and stay updated with the latest developments.

πŸ“Š Learning Paths

Learning Progression

flowchart TD
    %% Styling
    classDef fundamentals fill:#e1f5fe,stroke:#01579b,stroke-width:3px,color:#000
    classDef core fill:#f3e5f5,stroke:#4a148c,stroke-width:2px,color:#000
    classDef advanced fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px,color:#000
    classDef skills fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#000
    classDef specialization fill:#fce4ec,stroke:#880e4f,stroke-width:2px,color:#000
    
    %% Foundation Layer
    A[🎯 Fundamentals<br/>β€’ Math & Statistics<br/>β€’ Programming Basics<br/>β€’ Data Literacy]:::fundamentals
    
    %% Core Skills Layer
    A --> B[πŸ€– Core ML<br/>β€’ Supervised Learning<br/>β€’ Unsupervised Learning<br/>β€’ Model Evaluation]:::core
    A --> H[πŸ’Ό Business Skills<br/>β€’ Communication<br/>β€’ Problem Solving<br/>β€’ Project Management]:::skills
    A --> I[πŸ’» Programming<br/>β€’ Python/R<br/>β€’ SQL<br/>β€’ Version Control]:::skills
    A --> J[βš–οΈ Ethics<br/>β€’ Bias Detection<br/>β€’ Fairness<br/>β€’ Governance]:::skills
    
    %% Advanced Layer
    B --> C[🧠 Deep Learning<br/>β€’ Neural Networks<br/>β€’ Computer Vision<br/>β€’ NLP]:::core
    
    %% Specialization Layer
    C --> D[πŸš€ Advanced Topics<br/>β€’ Research<br/>β€’ Custom Architectures<br/>β€’ Optimization]:::advanced
    D --> E1[βš™οΈ MLOps<br/>β€’ Deployment<br/>β€’ Monitoring<br/>β€’ CI/CD]:::specialization
    D --> E2[πŸ”¬ Research<br/>β€’ Paper Reading<br/>β€’ Experimentation<br/>β€’ Innovation]:::specialization
    
    %% Cross-cutting connections
    H --> K[πŸ“’ Communication<br/>β€’ Technical Writing<br/>β€’ Presentations<br/>β€’ Stakeholder Management]:::skills
    I --> L[πŸ”„ Data Engineering<br/>β€’ ETL Pipelines<br/>β€’ Big Data<br/>β€’ Cloud Platforms]:::skills
    J --> M[πŸ›οΈ Governance<br/>β€’ Compliance<br/>β€’ Risk Management<br/>β€’ Policy Development]:::skills
    
    %% Advanced connections
    L --> E1
    K --> E1
    M --> E1
Loading

Technology Stack

mindmap
  root((πŸ€– AI/ML<br/>Ecosystem))
    🧠 Machine Learning
      πŸ“Š Scikit-learn
        β€’ Classification
        β€’ Regression
        β€’ Clustering
      πŸ“ˆ XGBoost
        β€’ Gradient Boosting
        β€’ Feature Importance
      πŸ” Model Selection
        β€’ Cross-validation
        β€’ Hyperparameter Tuning
        
    🎯 Deep Learning
      πŸ”₯ PyTorch
        β€’ Dynamic Graphs
        β€’ Research Focus
        β€’ Flexible Architecture
      πŸ—οΈ TensorFlow
        β€’ Production Ready
        β€’ TensorBoard
        β€’ Serving
      ⚑ JAX
        β€’ High Performance
        β€’ Functional Programming
        
    πŸ’¬ NLP
      πŸ€— Transformers
        β€’ Pre-trained Models
        β€’ Fine-tuning
        β€’ BERT/GPT
      πŸ”€ spaCy
        β€’ Text Processing
        β€’ NER
        β€’ POS Tagging
      πŸ“ NLTK
        β€’ Tokenization
        β€’ Stemming
        
    πŸ”„ Data Engineering
      🌊 Apache Spark
        β€’ Big Data Processing
        β€’ Distributed Computing
      🐼 Pandas
        β€’ Data Manipulation
        β€’ Analysis
      ☁️ Cloud Platforms
        β€’ AWS SageMaker
        β€’ Azure ML
        β€’ Google AI Platform
        
    βš–οΈ Ethical AI
      🎯 Bias Detection
        β€’ Fairness Metrics
        β€’ Algorithmic Auditing
      πŸ” Explainability
        β€’ SHAP
        β€’ LIME
        β€’ Model Interpretation
Loading

Model Development Pipeline

flowchart TD
    %% Styling
    classDef dataPhase fill:#e3f2fd,stroke:#1976d2,stroke-width:2px,color:#000
    classDef modelPhase fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#000
    classDef deployPhase fill:#e8f5e8,stroke:#388e3c,stroke-width:2px,color:#000
    classDef feedbackPhase fill:#fff3e0,stroke:#f57c00,stroke-width:2px,color:#000
    
    %% Data Phase
    A[πŸ“Š Data Collection<br/>β€’ Identify Sources<br/>β€’ Quality Assessment<br/>β€’ Legal Compliance]:::dataPhase
    
    A --> B[πŸ”§ Data Preprocessing<br/>β€’ Cleaning & Validation<br/>β€’ Feature Engineering<br/>β€’ Data Splitting]:::dataPhase
    
    %% Model Phase
    B --> C[🎯 Model Selection<br/>β€’ Algorithm Choice<br/>β€’ Architecture Design<br/>β€’ Baseline Models]:::modelPhase
    
    C --> D[⚑ Model Training<br/>β€’ Hyperparameter Tuning<br/>β€’ Cross-validation<br/>β€’ Regularization]:::modelPhase
    
    D --> E[πŸ“ˆ Model Evaluation<br/>β€’ Performance Metrics<br/>β€’ Bias Testing<br/>β€’ Error Analysis]:::modelPhase
    
    %% Decision Point
    E --> F{πŸ€” Model Ready?}:::modelPhase
    F -->|No| C
    F -->|Yes| G
    
    %% Deployment Phase
    G[πŸš€ Model Deployment<br/>β€’ Containerization<br/>β€’ API Development<br/>β€’ Load Testing]:::deployPhase
    
    G --> H[πŸ“Š Monitoring & Logging<br/>β€’ Performance Tracking<br/>β€’ Data Drift Detection<br/>β€’ Alert Systems]:::feedbackPhase
    
    %% Feedback Loop
    H --> I{⚠️ Issues Detected?}:::feedbackPhase
    I -->|Yes| J[πŸ”„ Model Retraining<br/>β€’ New Data Integration<br/>β€’ Architecture Updates<br/>β€’ A/B Testing]:::modelPhase
    I -->|No| K[βœ… Continuous Operation<br/>β€’ Regular Monitoring<br/>β€’ Scheduled Updates<br/>β€’ Documentation]:::deployPhase
    
    J --> D
    K --> H
    
    %% Additional Processes
    B --> L[πŸ§ͺ Exploratory Analysis<br/>β€’ Data Visualization<br/>β€’ Statistical Testing<br/>β€’ Feature Selection]:::dataPhase
    L --> C
Loading

MLOps Pipeline

flowchart TB
    %% Styling
    classDef development fill:#e1f5fe,stroke:#0277bd,stroke-width:2px,color:#000
    classDef cicd fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#000
    classDef deployment fill:#e8f5e8,stroke:#2e7d32,stroke-width:2px,color:#000
    classDef monitoring fill:#fff8e1,stroke:#f57c00,stroke-width:2px,color:#000
    classDef governance fill:#fce4ec,stroke:#c2185b,stroke-width:2px,color:#000
    
    %% Development Phase
    subgraph DEV [" πŸ”§ Development Phase "]
        A[πŸ“ Code Development<br/>β€’ Model Scripts<br/>β€’ Feature Engineering<br/>β€’ Unit Tests]:::development
        B[πŸ“Š Data Versioning<br/>β€’ DVC<br/>β€’ Data Lineage<br/>β€’ Schema Validation]:::development
        C[πŸ§ͺ Experiment Tracking<br/>β€’ MLflow<br/>β€’ Weights & Biases<br/>β€’ Parameter Logging]:::development
    end
    
    %% CI/CD Phase
    subgraph CICD [" βš™οΈ CI/CD Pipeline "]
        D[πŸ” Code Review<br/>β€’ Pull Requests<br/>β€’ Static Analysis<br/>β€’ Security Scans]:::cicd
        E[πŸ§ͺ Automated Testing<br/>β€’ Model Tests<br/>β€’ Data Tests<br/>β€’ Integration Tests]:::cicd
        F[πŸ“¦ Model Packaging<br/>β€’ Containerization<br/>β€’ Dependency Management<br/>β€’ Artifacts Storage]:::cicd
    end
    
    %% Deployment Phase
    subgraph DEPLOY [" πŸš€ Deployment Phase "]
        G[🌐 Model Serving<br/>β€’ REST APIs<br/>β€’ Batch Processing<br/>β€’ Real-time Inference]:::deployment
        H[πŸ“ˆ Staging Environment<br/>β€’ A/B Testing<br/>β€’ Canary Deployments<br/>β€’ Performance Testing]:::deployment
        I[🎯 Production Deployment<br/>β€’ Blue-Green Deploy<br/>β€’ Rolling Updates<br/>β€’ Rollback Strategy]:::deployment
    end
    
    %% Monitoring Phase
    subgraph MONITOR [" πŸ“Š Monitoring & Observability "]
        J[πŸ“ˆ Performance Monitoring<br/>β€’ Latency Tracking<br/>β€’ Throughput Metrics<br/>β€’ Error Rates]:::monitoring
        K[πŸ” Data Drift Detection<br/>β€’ Input Monitoring<br/>β€’ Distribution Shifts<br/>β€’ Feature Drift]:::monitoring
        L[🚨 Alerting System<br/>β€’ Threshold Alerts<br/>β€’ Anomaly Detection<br/>β€’ Incident Response]:::monitoring
    end
    
    %% Governance Phase
    subgraph GOVERN [" πŸ›‘οΈ Governance & Compliance "]
        M[πŸ“‹ Model Registry<br/>β€’ Version Control<br/>β€’ Metadata Management<br/>β€’ Approval Workflow]:::governance
        N[βš–οΈ Compliance Tracking<br/>β€’ Audit Trails<br/>β€’ Regulatory Requirements<br/>β€’ Ethics Review]:::governance
        O[πŸ“š Documentation<br/>β€’ Model Cards<br/>β€’ API Documentation<br/>β€’ Runbooks]:::governance
    end
    
    %% Connections
    A --> D
    B --> D
    C --> D
    D --> E
    E --> F
    F --> G
    G --> H
    H --> I
    I --> J
    J --> K
    K --> L
    
    %% Governance connections
    F --> M
    M --> G
    I --> N
    L --> O
    
    %% Feedback loops
    L --> |"πŸ”„ Retrain Trigger"| A
    K --> |"πŸ“Š Drift Alert"| B
    J --> |"⚠️ Performance Issues"| C
    
    %% Cross-phase connections
    M --> H
    N --> I
    O --> A
Loading

AI/ML Project Lifecycle

timeline
    title AI/ML Project Lifecycle
    
    section Planning
        πŸ“‹ Project Initiation : Problem Definition
                               : Stakeholder Alignment
                               : Success Metrics
        
        πŸ“Š Data Assessment    : Data Availability
                             : Quality Evaluation
                             : Privacy Compliance
    
    section Development
        πŸ”¬ Research Phase    : Literature Review
                            : Baseline Models
                            : Proof of Concept
        
        πŸ› οΈ Development      : Feature Engineering
                            : Model Training
                            : Hyperparameter Tuning
        
        πŸ§ͺ Validation       : Model Evaluation
                            : Cross-validation
                            : Bias Testing
    
    section Deployment
        πŸš€ Production        : Model Deployment
                            : API Integration
                            : Load Testing
        
        πŸ“Š Monitoring        : Performance Tracking
                            : Data Drift Detection
                            : Alert Systems
    
    section Maintenance
        πŸ”„ Continuous Learning : Model Retraining
                               : Data Updates
                               : Performance Optimization
        
        πŸ“ˆ Business Impact     : ROI Analysis
                               : Success Metrics
                               : Stakeholder Reporting
Loading

πŸ“š Core AI/ML

Machine Learning

Deep Learning

πŸ”€ Natural Language Processing

Core NLP

πŸ› οΈ Libraries & Frameworks

Deep Learning Frameworks

NLP Libraries

πŸ“Š Data Science Tools

Data Processing

Visualization

πŸ’Ό Business & Communication

Business Skills

πŸ”„ Data Engineering

Core Components

🀝 Ethical AI

Core Principles

πŸ“ Mathematics

Core Mathematics

πŸ’» Programming

Core Programming

πŸ”§ MLOps & Deployment

MLOps

CI/CD

Cloud Platforms

Deployment

Monitoring

πŸ“š Learning Resources

YouTube Channels

Blogs & Newsletters

Podcasts

Books & Papers

Development Tools

πŸš€ Project Ideas

Beginner Projects

  • Image Classification
  • Sentiment Analysis
  • Time Series Forecasting
  • Customer Churn Prediction
  • Movie Recommendation System
  • Text Generation
  • Data Visualization Dashboard

Intermediate Projects

  • Object Detection System
  • Language Translation Model
  • Fraud Detection System
  • Stock Price Prediction
  • Chatbot Development
  • Image Style Transfer
  • Anomaly Detection System

Advanced Projects

  • GANs for Image Generation
  • Reinforcement Learning Agent
  • Multi-modal Learning System
  • AutoML Pipeline
  • Real-time Object Detection
  • Large Language Model Fine-tuning
  • MLOps Pipeline Implementation

πŸ“ˆ Best Practices

Development

  • Model Development Lifecycle
  • Code Organization
  • Testing ML Models
  • Documentation
  • Version Control for Data and Models
  • Experiment Tracking

Deployment

  • Model Serving
  • API Development
  • Containerization
  • Cloud Deployment
  • Model Monitoring
  • Performance Optimization

MLOps

  • Version Control
  • Experiment Tracking
  • Model Monitoring
  • Pipeline Automation
  • CI/CD for ML
  • Infrastructure as Code

πŸŽ“ Learning Path

  1. Fundamentals

    • Mathematics & Statistics
    • Python Programming
    • Data Manipulation
    • Basic ML Concepts
    • Business Communication
    • Ethical Considerations
  2. Core ML

    • Supervised Learning
    • Unsupervised Learning
    • Model Evaluation
    • Feature Engineering
    • Data Engineering Basics
    • SQL & Databases
  3. Deep Learning

    • Neural Networks
    • Deep Learning Frameworks
    • Computer Vision
    • Natural Language Processing
    • Model Interpretability
    • Performance Optimization
  4. Advanced Topics

    • MLOps & Deployment
    • Cloud Platforms
    • Production Systems
    • Latest Research
    • Ethical Governance
    • Business Integration

🀝 Contributing

Feel free to contribute by:

  1. Adding new resources
  2. Updating existing materials
  3. Fixing errors or broken links
  4. Improving documentation
  5. Sharing project ideas

Please read our Contributing Guidelines before submitting a PR.

πŸ“ License

This repository is licensed under the MIT License - see the LICENSE file for details.

πŸ‘€ Author & Maintainer

This repository is maintained by Donnivis Baker. For questions or feedback, please open an issue or reach out directly.


Last Updated: February 2025

About

No description, website, or topics provided.

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published