A comprehensive collection of resources for learning Artificial Intelligence (AI), Machine Learning (ML), and Natural Language Processing (NLP). This repository provides structured learning paths, practical examples, and curated resources for AI/ML practitioners at all levels.
If you find this repository helpful or are using it to learn AI/ML development, please give it a star. Thanks!
- Core AI/ML
- Natural Language Processing
- Libraries & Frameworks
- Data Science Tools
- Business & Communication
- Data Engineering
- Ethical AI
- Mathematics
- Programming Fundamentals
- MLOps & Deployment
- Learning Resources
- Best Practices
- Learning Path
- Contributing
- License
This repository aims to provide a structured learning path for AI/ML technology and its ecosystem. The content is designed to guide you in understanding core concepts and practical implementation, rather than promoting specific frameworks or technologies. Remember that AI/ML field evolves rapidly - always verify information and stay updated with the latest developments.
flowchart TD
%% Styling
classDef fundamentals fill:#e1f5fe,stroke:#01579b,stroke-width:3px,color:#000
classDef core fill:#f3e5f5,stroke:#4a148c,stroke-width:2px,color:#000
classDef advanced fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px,color:#000
classDef skills fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#000
classDef specialization fill:#fce4ec,stroke:#880e4f,stroke-width:2px,color:#000
%% Foundation Layer
A[π― Fundamentals<br/>β’ Math & Statistics<br/>β’ Programming Basics<br/>β’ Data Literacy]:::fundamentals
%% Core Skills Layer
A --> B[π€ Core ML<br/>β’ Supervised Learning<br/>β’ Unsupervised Learning<br/>β’ Model Evaluation]:::core
A --> H[πΌ Business Skills<br/>β’ Communication<br/>β’ Problem Solving<br/>β’ Project Management]:::skills
A --> I[π» Programming<br/>β’ Python/R<br/>β’ SQL<br/>β’ Version Control]:::skills
A --> J[βοΈ Ethics<br/>β’ Bias Detection<br/>β’ Fairness<br/>β’ Governance]:::skills
%% Advanced Layer
B --> C[π§ Deep Learning<br/>β’ Neural Networks<br/>β’ Computer Vision<br/>β’ NLP]:::core
%% Specialization Layer
C --> D[π Advanced Topics<br/>β’ Research<br/>β’ Custom Architectures<br/>β’ Optimization]:::advanced
D --> E1[βοΈ MLOps<br/>β’ Deployment<br/>β’ Monitoring<br/>β’ CI/CD]:::specialization
D --> E2[π¬ Research<br/>β’ Paper Reading<br/>β’ Experimentation<br/>β’ Innovation]:::specialization
%% Cross-cutting connections
H --> K[π’ Communication<br/>β’ Technical Writing<br/>β’ Presentations<br/>β’ Stakeholder Management]:::skills
I --> L[π Data Engineering<br/>β’ ETL Pipelines<br/>β’ Big Data<br/>β’ Cloud Platforms]:::skills
J --> M[ποΈ Governance<br/>β’ Compliance<br/>β’ Risk Management<br/>β’ Policy Development]:::skills
%% Advanced connections
L --> E1
K --> E1
M --> E1
mindmap
root((π€ AI/ML<br/>Ecosystem))
π§ Machine Learning
π Scikit-learn
β’ Classification
β’ Regression
β’ Clustering
π XGBoost
β’ Gradient Boosting
β’ Feature Importance
π Model Selection
β’ Cross-validation
β’ Hyperparameter Tuning
π― Deep Learning
π₯ PyTorch
β’ Dynamic Graphs
β’ Research Focus
β’ Flexible Architecture
ποΈ TensorFlow
β’ Production Ready
β’ TensorBoard
β’ Serving
β‘ JAX
β’ High Performance
β’ Functional Programming
π¬ NLP
π€ Transformers
β’ Pre-trained Models
β’ Fine-tuning
β’ BERT/GPT
π€ spaCy
β’ Text Processing
β’ NER
β’ POS Tagging
π NLTK
β’ Tokenization
β’ Stemming
π Data Engineering
π Apache Spark
β’ Big Data Processing
β’ Distributed Computing
πΌ Pandas
β’ Data Manipulation
β’ Analysis
βοΈ Cloud Platforms
β’ AWS SageMaker
β’ Azure ML
β’ Google AI Platform
βοΈ Ethical AI
π― Bias Detection
β’ Fairness Metrics
β’ Algorithmic Auditing
π Explainability
β’ SHAP
β’ LIME
β’ Model Interpretation
flowchart TD
%% Styling
classDef dataPhase fill:#e3f2fd,stroke:#1976d2,stroke-width:2px,color:#000
classDef modelPhase fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#000
classDef deployPhase fill:#e8f5e8,stroke:#388e3c,stroke-width:2px,color:#000
classDef feedbackPhase fill:#fff3e0,stroke:#f57c00,stroke-width:2px,color:#000
%% Data Phase
A[π Data Collection<br/>β’ Identify Sources<br/>β’ Quality Assessment<br/>β’ Legal Compliance]:::dataPhase
A --> B[π§ Data Preprocessing<br/>β’ Cleaning & Validation<br/>β’ Feature Engineering<br/>β’ Data Splitting]:::dataPhase
%% Model Phase
B --> C[π― Model Selection<br/>β’ Algorithm Choice<br/>β’ Architecture Design<br/>β’ Baseline Models]:::modelPhase
C --> D[β‘ Model Training<br/>β’ Hyperparameter Tuning<br/>β’ Cross-validation<br/>β’ Regularization]:::modelPhase
D --> E[π Model Evaluation<br/>β’ Performance Metrics<br/>β’ Bias Testing<br/>β’ Error Analysis]:::modelPhase
%% Decision Point
E --> F{π€ Model Ready?}:::modelPhase
F -->|No| C
F -->|Yes| G
%% Deployment Phase
G[π Model Deployment<br/>β’ Containerization<br/>β’ API Development<br/>β’ Load Testing]:::deployPhase
G --> H[π Monitoring & Logging<br/>β’ Performance Tracking<br/>β’ Data Drift Detection<br/>β’ Alert Systems]:::feedbackPhase
%% Feedback Loop
H --> I{β οΈ Issues Detected?}:::feedbackPhase
I -->|Yes| J[π Model Retraining<br/>β’ New Data Integration<br/>β’ Architecture Updates<br/>β’ A/B Testing]:::modelPhase
I -->|No| K[β
Continuous Operation<br/>β’ Regular Monitoring<br/>β’ Scheduled Updates<br/>β’ Documentation]:::deployPhase
J --> D
K --> H
%% Additional Processes
B --> L[π§ͺ Exploratory Analysis<br/>β’ Data Visualization<br/>β’ Statistical Testing<br/>β’ Feature Selection]:::dataPhase
L --> C
flowchart TB
%% Styling
classDef development fill:#e1f5fe,stroke:#0277bd,stroke-width:2px,color:#000
classDef cicd fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#000
classDef deployment fill:#e8f5e8,stroke:#2e7d32,stroke-width:2px,color:#000
classDef monitoring fill:#fff8e1,stroke:#f57c00,stroke-width:2px,color:#000
classDef governance fill:#fce4ec,stroke:#c2185b,stroke-width:2px,color:#000
%% Development Phase
subgraph DEV [" π§ Development Phase "]
A[π Code Development<br/>β’ Model Scripts<br/>β’ Feature Engineering<br/>β’ Unit Tests]:::development
B[π Data Versioning<br/>β’ DVC<br/>β’ Data Lineage<br/>β’ Schema Validation]:::development
C[π§ͺ Experiment Tracking<br/>β’ MLflow<br/>β’ Weights & Biases<br/>β’ Parameter Logging]:::development
end
%% CI/CD Phase
subgraph CICD [" βοΈ CI/CD Pipeline "]
D[π Code Review<br/>β’ Pull Requests<br/>β’ Static Analysis<br/>β’ Security Scans]:::cicd
E[π§ͺ Automated Testing<br/>β’ Model Tests<br/>β’ Data Tests<br/>β’ Integration Tests]:::cicd
F[π¦ Model Packaging<br/>β’ Containerization<br/>β’ Dependency Management<br/>β’ Artifacts Storage]:::cicd
end
%% Deployment Phase
subgraph DEPLOY [" π Deployment Phase "]
G[π Model Serving<br/>β’ REST APIs<br/>β’ Batch Processing<br/>β’ Real-time Inference]:::deployment
H[π Staging Environment<br/>β’ A/B Testing<br/>β’ Canary Deployments<br/>β’ Performance Testing]:::deployment
I[π― Production Deployment<br/>β’ Blue-Green Deploy<br/>β’ Rolling Updates<br/>β’ Rollback Strategy]:::deployment
end
%% Monitoring Phase
subgraph MONITOR [" π Monitoring & Observability "]
J[π Performance Monitoring<br/>β’ Latency Tracking<br/>β’ Throughput Metrics<br/>β’ Error Rates]:::monitoring
K[π Data Drift Detection<br/>β’ Input Monitoring<br/>β’ Distribution Shifts<br/>β’ Feature Drift]:::monitoring
L[π¨ Alerting System<br/>β’ Threshold Alerts<br/>β’ Anomaly Detection<br/>β’ Incident Response]:::monitoring
end
%% Governance Phase
subgraph GOVERN [" π‘οΈ Governance & Compliance "]
M[π Model Registry<br/>β’ Version Control<br/>β’ Metadata Management<br/>β’ Approval Workflow]:::governance
N[βοΈ Compliance Tracking<br/>β’ Audit Trails<br/>β’ Regulatory Requirements<br/>β’ Ethics Review]:::governance
O[π Documentation<br/>β’ Model Cards<br/>β’ API Documentation<br/>β’ Runbooks]:::governance
end
%% Connections
A --> D
B --> D
C --> D
D --> E
E --> F
F --> G
G --> H
H --> I
I --> J
J --> K
K --> L
%% Governance connections
F --> M
M --> G
I --> N
L --> O
%% Feedback loops
L --> |"π Retrain Trigger"| A
K --> |"π Drift Alert"| B
J --> |"β οΈ Performance Issues"| C
%% Cross-phase connections
M --> H
N --> I
O --> A
timeline
title AI/ML Project Lifecycle
section Planning
π Project Initiation : Problem Definition
: Stakeholder Alignment
: Success Metrics
π Data Assessment : Data Availability
: Quality Evaluation
: Privacy Compliance
section Development
π¬ Research Phase : Literature Review
: Baseline Models
: Proof of Concept
π οΈ Development : Feature Engineering
: Model Training
: Hyperparameter Tuning
π§ͺ Validation : Model Evaluation
: Cross-validation
: Bias Testing
section Deployment
π Production : Model Deployment
: API Integration
: Load Testing
π Monitoring : Performance Tracking
: Data Drift Detection
: Alert Systems
section Maintenance
π Continuous Learning : Model Retraining
: Data Updates
: Performance Optimization
π Business Impact : ROI Analysis
: Success Metrics
: Stakeholder Reporting
-
- Classification & Regression
- Model Evaluation
- Feature Engineering
- Best Practices
- Learning Resources
-
- Clustering Algorithms
- Dimensionality Reduction
- Anomaly Detection
- Implementation Guide
- Learning Resources
-
- Network Architectures
- Training Techniques
- Implementation Guide
- Best Practices
- Learning Resources
-
- CNN Architectures
- Object Detection
- Image Processing
- Practical Applications
- Learning Resources
-
- Text Preprocessing
- Tokenization
- POS Tagging & NER
- Implementation Guide
- Learning Resources
-
- Text Classification
- Named Entity Recognition
- Sentiment Analysis
- Practical Examples
- Learning Resources
-
- Core Components
- Model Development
- Deployment Guide
- Best Practices
- Learning Resources
-
- Core Features
- Model Building
- Training & Deployment
- Best Practices
- Learning Resources
- Hugging Face
- Transformers Library
- Model Training
- Deployment Guide
- Best Practices
- Learning Resources
- NumPy & Pandas Guide
- Data Manipulation
- Analysis Tools
- Best Practices
- Performance Tips
- Learning Resources
- Data Visualization Guide
- Matplotlib
- Seaborn
- Plotly
- Best Practices
- Learning Resources
-
- Industry Applications
- Success Stories
- Lessons Learned
- Implementation Strategies
- Learning Resources
-
- Technical Writing
- Presentation Skills
- Stakeholder Management
- Documentation
- Learning Resources
-
- Business Analysis
- Solution Design
- Implementation Planning
- Best Practices
- Learning Resources
-
- REST APIs
- GraphQL
- Webhooks
- Authentication
- Learning Resources
-
- Hadoop
- Spark
- Data Lakes
- ETL Pipelines
- Learning Resources
-
- Data Cleaning
- Feature Engineering
- Data Validation
- Pipeline Development
- Learning Resources
-
- Data Bias
- Model Bias
- Testing Methods
- Mitigation Strategies
- Learning Resources
-
- Model Interpretation
- Feature Importance
- SHAP Values
- LIME
- Learning Resources
-
- Ethical Guidelines
- Compliance
- Risk Management
- Best Practices
- Learning Resources
-
- Derivatives
- Integrals
- Optimization
- Applications in ML
- Learning Resources
-
- Matrices
- Vectors
- Eigenvalues
- Applications in ML
- Learning Resources
-
- Gradient Descent
- Convex Optimization
- Constrained Optimization
- Applications
- Learning Resources
-
- Probability Theory
- Statistical Inference
- Hypothesis Testing
- Applications in ML
- Learning Resources
-
- Code Profiling
- Memory Management
- Parallel Processing
- Best Practices
- Learning Resources
-
- Advanced Features
- Design Patterns
- Testing
- Best Practices
- Learning Resources
-
- Data Analysis
- Statistical Computing
- Visualization
- Best Practices
- Learning Resources
-
- Query Optimization
- Database Design
- Data Modeling
- Best Practices
- Learning Resources
- MLOps Guide
- Model Deployment
- Monitoring
- CI/CD Pipelines
- Best Practices
- Learning Resources
- CI/CD Pipelines
- Pipeline Design
- Automation
- Testing Strategies
- Best Practices
- Learning Resources
- Cloud Integration
- AWS
- Azure
- GCP
- Best Practices
- Learning Resources
- Deployment Strategies
- Containerization
- Orchestration
- Scaling
- Best Practices
- Learning Resources
- System Monitoring
- Performance Metrics
- Alerting
- Logging
- Best Practices
- Learning Resources
- 3Blue1Brown - Math foundations
- StatQuest - Statistical concepts
- Yannic Kilcher - Paper reviews
- Two Minute Papers - AI news and developments
- Weights & Biases - MLOps and experiments
- Sentdex - Practical ML tutorials
- Deep Learning AI - Deep learning concepts
- Towards Data Science
- Machine Learning Mastery
- Sebastian Ruder's Blog
- Distill.pub
- Google AI Blog
- OpenAI Blog
- Papers with Code
- "Deep Learning" by Goodfellow et al.
- "Pattern Recognition and Machine Learning"
- "Speech and Language Processing"
- Papers with Code
- arXiv ML Papers
- Image Classification
- Sentiment Analysis
- Time Series Forecasting
- Customer Churn Prediction
- Movie Recommendation System
- Text Generation
- Data Visualization Dashboard
- Object Detection System
- Language Translation Model
- Fraud Detection System
- Stock Price Prediction
- Chatbot Development
- Image Style Transfer
- Anomaly Detection System
- GANs for Image Generation
- Reinforcement Learning Agent
- Multi-modal Learning System
- AutoML Pipeline
- Real-time Object Detection
- Large Language Model Fine-tuning
- MLOps Pipeline Implementation
- Model Development Lifecycle
- Code Organization
- Testing ML Models
- Documentation
- Version Control for Data and Models
- Experiment Tracking
- Model Serving
- API Development
- Containerization
- Cloud Deployment
- Model Monitoring
- Performance Optimization
- Version Control
- Experiment Tracking
- Model Monitoring
- Pipeline Automation
- CI/CD for ML
- Infrastructure as Code
-
Fundamentals
- Mathematics & Statistics
- Python Programming
- Data Manipulation
- Basic ML Concepts
- Business Communication
- Ethical Considerations
-
Core ML
- Supervised Learning
- Unsupervised Learning
- Model Evaluation
- Feature Engineering
- Data Engineering Basics
- SQL & Databases
-
Deep Learning
- Neural Networks
- Deep Learning Frameworks
- Computer Vision
- Natural Language Processing
- Model Interpretability
- Performance Optimization
-
Advanced Topics
- MLOps & Deployment
- Cloud Platforms
- Production Systems
- Latest Research
- Ethical Governance
- Business Integration
Feel free to contribute by:
- Adding new resources
- Updating existing materials
- Fixing errors or broken links
- Improving documentation
- Sharing project ideas
Please read our Contributing Guidelines before submitting a PR.
This repository is licensed under the MIT License - see the LICENSE file for details.
This repository is maintained by Donnivis Baker. For questions or feedback, please open an issue or reach out directly.
Last Updated: February 2025