Personalized beauty solutions powered by cutting-edge AI technology
- Ingredient Scanner: Upload photos of product labels for instant AI analysis
- Suitability Score: Get personalized 1-10 compatibility ratings
- Allergen Detection: Identify potential skin irritants based on your profile
- Ingredient Breakdown: Detailed analysis of beneficial and concerning ingredients
- Comprehensive Quiz: Advanced skin type determination algorithm
- Custom Recommendations: Tailored advice based on your unique skin profile
- Progress Tracking: Monitor your skin journey over time
- Concern Analysis: Address specific skin issues with targeted solutions
- 24/7 Skincare Expert: Get instant answers to your skincare questions
- Contextual Advice: Personalized recommendations based on your skin profile
- Product Suggestions: Smart recommendations for your specific needs
- Memory Integration: AI remembers your history for better advice
- Issue Tracking: Monitor skin problems and their progress
- Allergen Database: Personal record of ingredients to avoid
- Analysis History: Complete log of all product analyses
- Trend Analysis: Identify patterns in your skin's responses
- End-to-End Encryption: Your data is always protected
- GDPR Compliant: Full control over your personal information
- Offline Mode: Core features work without internet connection
- Data Export: Download your complete skincare history
// Core Technologies
React Native 0.72
Expo SDK 49
TypeScript
NativeWind (Tailwind CSS)
// State Management & Navigation
React Navigation 6
AsyncStorage
Context API
// UI/UX Libraries
Expo Linear Gradient
React Native Reanimated
Lottie React Native# API Framework
FastAPI 0.104
SQLAlchemy ORM
Alembic Migrations
Pydantic Validation
# AI & ML Integration
Google Gemini AI
OpenAI GPT Integration
Image Processing
Natural Language Processing
# Database & Storage
PostgreSQL
Redis Cache
Supabase Storage# Deployment
Docker Containers
GitHub Actions CI/CD
Azure Cloud Services
# Monitoring & Analytics
Sentry Error Tracking
Analytics Dashboard
Performance Monitoring- Node.js 18+
- Python 3.12+
- Expo CLI
- Android Studio / Xcode
git clone https://github.com/yourusername/skinsenseai.git
cd skinsenseai# Navigate to backend directory
cd fastapi-backend
# Create virtual environment
python -m venv myvenv
myvenv\Scripts\activate # On Windows
# Install dependencies
pip install -r requirements.txt
# Set up environment variables
cp .env.example .env
# Edit .env with your API keys and database config
# Run database migrations
alembic upgrade head
# Start the server
uvicorn main:app --host 0.0.0.0 --port 8000 --reload# Navigate to frontend directory
cd SkinSenseAI
# Install dependencies
npm install
# Set up environment variables
cp .env.example .env
# Edit .env with your backend URL and API keys
# Start the development server
npm start# For iOS (requires Xcode)
npx expo run:ios
# For Android (requires Android Studio)
npx expo run:android
# Or scan QR code with Expo Go appskinsenseai/
βββ π± SkinSenseAI/ # React Native Frontend
β βββ π¨ src/
β β βββ components/ # Reusable UI components
β β βββ screens/ # App screens
β β βββ services/ # API services
β β βββ contexts/ # React contexts
β β βββ utils/ # Utility functions
β βββ π― assets/ # Images, fonts, etc.
β βββ π package.json
βββ π₯οΈ fastapi-backend/ # FastAPI Backend
β βββ π§ app/
β β βββ api/ # API endpoints
β β βββ models/ # Database models
β β βββ services/ # Business logic
β β βββ core/ # Core configurations
β βββ ποΈ alembic/ # Database migrations
β βββ π requirements.txt
βββ π docs/ # Documentation
/* Primary Colors */
--primary-cyan: #00f5ff
--primary-blue: #0080ff
--primary-purple: #8000ff
/* Status Colors */
--success: #00ff88
--warning: #ffaa00
--error: #ff4444
--info: #00f5ff
/* Neutral Colors */
--background: #000000
--surface: #1a1a1a
--text-primary: #ffffff
--text-secondary: #888888- Headers: SF Pro Display / Roboto
- Body: SF Pro Text / Roboto
- Code: SF Mono / Roboto Mono
POST /api/v1/auth/register
POST /api/v1/auth/login
POST /api/v1/auth/refresh
DELETE /api/v1/auth/logoutPOST /api/v1/products/analyze
GET /api/v1/products/history
GET /api/v1/products/{id}POST /api/v1/skin/assessment
GET /api/v1/skin/profile
PUT /api/v1/skin/profilePOST /api/v1/chat/sessions
GET /api/v1/chat/sessions
POST /api/v1/chat/{session_id}/messages{
"success": true,
"data": {
"product_name": "Sample Product",
"suitability_score": 8,
"analysis_result": {
"beneficial_ingredients": ["Niacinamide", "Hyaluronic Acid"],
"concerning_ingredients": ["Fragrance"],
"recommendation": "Suitable for your skin type"
}
},
"message": "Analysis completed successfully"
}# Build for production
eas build --platform all
# Submit to app stores
eas submit --platform all-Its deployed on Azure App Service
- App Launch Time: < 2 seconds
- Image Analysis: < 5 seconds
- API Response Time: < 500ms
- Offline Capability: 80% of features
- Cross-Platform: iOS & Android
We welcome contributions! Please see our Contributing Guide for details.
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- Google Gemini AI for powerful image analysis
- Expo Team for excellent React Native tools
- FastAPI for the amazing Python framework
- Open Source Community for inspiration and support
Made with β€οΈ by the SkinSenseAI Team
Β© 2025 SkinSenseAI. All rights reserved.






