TSGM is an open-source framework for synthetic time series generation and augmentation.
The framework can be used for:
- creating synthetic data, using historical data, black-box models, or a combined approach,
- augmenting time series data,
- evaluating synthetic data with respect to consistency, privacy, downstream performance, and more.
pip install tsgm
Introductory Tutorial "Getting started with TSGM"
Tutorial on using Time Series Augmentations
Tutorial on using multiple GPUs or TPU with TSGM
For more examples, see our tutorials.
import tsgm
# ... Define hyperparameters ...
# dataset is a tensor of shape n_samples x seq_len x feature_dim
# Zoo contains several prebuilt architectures: we choose a conditional GAN architecture
architecture = tsgm.models.architectures.zoo["cgan_base_c4_l1"](
seq_len=seq_len, feat_dim=feature_dim,
latent_dim=latent_dim, output_dim=0)
discriminator, generator = architecture.discriminator, architecture.generator
# Initialize GAN object with selected discriminator and generator
gan = tsgm.models.cgan.GAN(
discriminator=discriminator, generator=generator, latent_dim=latent_dim
)
gan.compile(
d_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
g_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
loss_fn=keras.losses.BinaryCrossentropy(from_logits=True),
)
gan.fit(dataset, epochs=N_EPOCHS)
# Generate 100 synthetic samples
result = gan.generate(100)We provide:
- Documentation with a complete overview of the implemented methods,
- Tutorials that describe practical use-cases of the framework.
git clone github.com/AlexanderVNikitin/tsgm
cd tsgm
pip install -e .Run tests:
python -m pytestTo check static typing:
mypyWe provide two CLIs for convenient synthetic data generation:
tsgm-gdgenerates data by a stored sample,tsgm-evalevaluates the generated time series.
Use tsgm-gd --help or tsgm-eval --help for documentation.
TSGM provides API for convenient use of many time-series datasets (currently more than 15 datasets). The comprehensive list of the datasets in the documentation
TSGM provides a number of time series augmentations.
| Augmentation | Class in TSGM | Reference |
|---|---|---|
| Gaussian Noise / Jittering | tsgm.augmentations.GaussianNoise |
- |
| Slice-And-Shuffle | tsgm.augmentations.SliceAndShuffle |
- |
| Shuffle features | tsgm.augmentations.Shuffle |
- |
| Magnitude warping | tsgm.augmentations.MagnitudeWarping |
Data Augmentation of Wearable Sensor Data for Parkinson’s Disease Monitoring using Convolutional Neural Networks |
| Window warping | tsgm.augmentations.WindowWarping |
Data Augmentation for Time Series Classification using Convolutional Neural Networks |
We appreciate all contributions. To learn more, please check CONTRIBUTING.md.
If you find this repo useful, please consider citing our paper:
@article{
nikitin2023tsgm,
title={TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series},
author={Nikitin, Alexander and Iannucci, Letizia and Kaski, Samuel},
journal={arXiv preprint arXiv:2305.11567},
year={2023}
}
