Skip to content

feat: add solutions to lc problem: No.3599 #4536

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 29, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
138 changes: 134 additions & 4 deletions solution/3500-3599/3599.Partition Array to Minimize XOR/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -98,32 +98,162 @@ edit_url: https://github.com/doocs/leetcode/edit/main/solution/3500-3599/3599.Pa

<!-- solution:start -->

### 方法一
### 方法一:动态规划

我们定义 $f[i][j]$ 表示将前 $i$ 个元素划分成 $j$ 个子数组的最大 XOR 的最小值。初始时 $f[0][0] = 0$,其余 $f[i][j] = +\infty$。

为了快速计算子数组的 XOR,我们可以使用前缀 XOR 数组 $g$,其中 $g[i]$ 表示前 $i$ 个元素的 XOR 值,那么对于子数组 $[h + 1...i]$(下标从 $1$ 开始),其 XOR 值为 $g[i] \oplus g[h]$。

接下来,我们在 $[1, n]$ 的范围内遍历 $i$,在 $[1, \min(i, k)]$ 的范围内遍历 $j$,并在 $[j - 1, i - 1]$ 的范围内遍历 $h$,其中 $h$ 表示上一个子数组的结束位置(下标从 $1$ 开始)。我们可以通过以下状态转移方程来更新 $f[i][j]$:

$$
f[i][j] = \min_{h \in [j - 1, i - 1]} \max(f[h][j - 1], g[i] \oplus g[h])
$$

最后,我们返回 $f[n][k]$,即将整个数组划分成 $k$ 个子数组的最大 XOR 的最小值。

时间复杂度 $O(n^2 \times k)$,空间复杂度 $O(n \times k)$,其中 $n$ 是数组的长度。

<!-- tabs:start -->

#### Python3

```python

min = lambda a, b: a if a < b else b
max = lambda a, b: a if a > b else b


class Solution:
def minXor(self, nums: List[int], k: int) -> int:
n = len(nums)
g = [0] * (n + 1)
for i, x in enumerate(nums, 1):
g[i] = g[i - 1] ^ x

f = [[inf] * (k + 1) for _ in range(n + 1)]
f[0][0] = 0
for i in range(1, n + 1):
for j in range(1, min(i, k) + 1):
for h in range(j - 1, i):
f[i][j] = min(f[i][j], max(f[h][j - 1], g[i] ^ g[h]))
return f[n][k]
```

#### Java

```java

class Solution {
public int minXor(int[] nums, int k) {
int n = nums.length;
int[] g = new int[n + 1];
for (int i = 1; i <= n; ++i) {
g[i] = g[i - 1] ^ nums[i - 1];
}

int[][] f = new int[n + 1][k + 1];
for (int i = 0; i <= n; ++i) {
Arrays.fill(f[i], Integer.MAX_VALUE);
}
f[0][0] = 0;

for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= Math.min(i, k); ++j) {
for (int h = j - 1; h < i; ++h) {
f[i][j] = Math.min(f[i][j], Math.max(f[h][j - 1], g[i] ^ g[h]));
}
}
}

return f[n][k];
}
}
```

#### C++

```cpp

class Solution {
public:
int minXor(vector<int>& nums, int k) {
int n = nums.size();
vector<int> g(n + 1);
for (int i = 1; i <= n; ++i) {
g[i] = g[i - 1] ^ nums[i - 1];
}

const int inf = numeric_limits<int>::max();
vector f(n + 1, vector(k + 1, inf));
f[0][0] = 0;

for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= min(i, k); ++j) {
for (int h = j - 1; h < i; ++h) {
f[i][j] = min(f[i][j], max(f[h][j - 1], g[i] ^ g[h]));
}
}
}

return f[n][k];
}
};
```

#### Go

```go
func minXor(nums []int, k int) int {
n := len(nums)
g := make([]int, n+1)
for i := 1; i <= n; i++ {
g[i] = g[i-1] ^ nums[i-1]
}

const inf = math.MaxInt32
f := make([][]int, n+1)
for i := range f {
f[i] = make([]int, k+1)
for j := range f[i] {
f[i][j] = inf
}
}
f[0][0] = 0

for i := 1; i <= n; i++ {
for j := 1; j <= min(i, k); j++ {
for h := j - 1; h < i; h++ {
f[i][j] = min(f[i][j], max(f[h][j-1], g[i]^g[h]))
}
}
}

return f[n][k]
}
```

#### TypeScript

```ts
function minXor(nums: number[], k: number): number {
const n = nums.length;
const g: number[] = Array(n + 1).fill(0);
for (let i = 1; i <= n; ++i) {
g[i] = g[i - 1] ^ nums[i - 1];
}

const inf = Number.MAX_SAFE_INTEGER;
const f: number[][] = Array.from({ length: n + 1 }, () => Array(k + 1).fill(inf));
f[0][0] = 0;

for (let i = 1; i <= n; ++i) {
for (let j = 1; j <= Math.min(i, k); ++j) {
for (let h = j - 1; h < i; ++h) {
f[i][j] = Math.min(f[i][j], Math.max(f[h][j - 1], g[i] ^ g[h]));
}
}
}

return f[n][k];
}
```

<!-- tabs:end -->
Expand Down
138 changes: 134 additions & 4 deletions solution/3500-3599/3599.Partition Array to Minimize XOR/README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -95,32 +95,162 @@ A <strong>subarray</strong> is a contiguous <b>non-empty</b> sequence of element

<!-- solution:start -->

### Solution 1
### Solution 1: Dynamic Programming

We define $f[i][j]$ as the minimum possible value of the maximum XOR among all ways to partition the first $i$ elements into $j$ subarrays. Initially, set $f[0][0] = 0$, and all other $f[i][j] = +\infty$.

To quickly compute the XOR of a subarray, we can use a prefix XOR array $g$, where $g[i]$ represents the XOR of the first $i$ elements. For the subarray $[h + 1...i]$ (with indices starting from $1$), its XOR value is $g[i] \oplus g[h]$.

Next, we iterate $i$ from $1$ to $n$, $j$ from $1$ to $\min(i, k)$, and $h$ from $j - 1$ to $i - 1$, where $h$ represents the end position of the previous subarray (indices starting from $1$). We update $f[i][j]$ using the following state transition equation:

$$
f[i][j] = \min_{h \in [j - 1, i - 1]} \max(f[h][j - 1], g[i] \oplus g[h])
$$

Finally, we return $f[n][k]$, which is the minimum possible value of the maximum XOR when partitioning the entire array into $k$ subarrays.

The time complexity is $O(n^2 \times k)$, and the space complexity is $O(n \times k)$, where $n$ is the length of the array.

<!-- tabs:start -->

#### Python3

```python

min = lambda a, b: a if a < b else b
max = lambda a, b: a if a > b else b


class Solution:
def minXor(self, nums: List[int], k: int) -> int:
n = len(nums)
g = [0] * (n + 1)
for i, x in enumerate(nums, 1):
g[i] = g[i - 1] ^ x

f = [[inf] * (k + 1) for _ in range(n + 1)]
f[0][0] = 0
for i in range(1, n + 1):
for j in range(1, min(i, k) + 1):
for h in range(j - 1, i):
f[i][j] = min(f[i][j], max(f[h][j - 1], g[i] ^ g[h]))
return f[n][k]
```

#### Java

```java

class Solution {
public int minXor(int[] nums, int k) {
int n = nums.length;
int[] g = new int[n + 1];
for (int i = 1; i <= n; ++i) {
g[i] = g[i - 1] ^ nums[i - 1];
}

int[][] f = new int[n + 1][k + 1];
for (int i = 0; i <= n; ++i) {
Arrays.fill(f[i], Integer.MAX_VALUE);
}
f[0][0] = 0;

for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= Math.min(i, k); ++j) {
for (int h = j - 1; h < i; ++h) {
f[i][j] = Math.min(f[i][j], Math.max(f[h][j - 1], g[i] ^ g[h]));
}
}
}

return f[n][k];
}
}
```

#### C++

```cpp

class Solution {
public:
int minXor(vector<int>& nums, int k) {
int n = nums.size();
vector<int> g(n + 1);
for (int i = 1; i <= n; ++i) {
g[i] = g[i - 1] ^ nums[i - 1];
}

const int inf = numeric_limits<int>::max();
vector f(n + 1, vector(k + 1, inf));
f[0][0] = 0;

for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= min(i, k); ++j) {
for (int h = j - 1; h < i; ++h) {
f[i][j] = min(f[i][j], max(f[h][j - 1], g[i] ^ g[h]));
}
}
}

return f[n][k];
}
};
```

#### Go

```go
func minXor(nums []int, k int) int {
n := len(nums)
g := make([]int, n+1)
for i := 1; i <= n; i++ {
g[i] = g[i-1] ^ nums[i-1]
}

const inf = math.MaxInt32
f := make([][]int, n+1)
for i := range f {
f[i] = make([]int, k+1)
for j := range f[i] {
f[i][j] = inf
}
}
f[0][0] = 0

for i := 1; i <= n; i++ {
for j := 1; j <= min(i, k); j++ {
for h := j - 1; h < i; h++ {
f[i][j] = min(f[i][j], max(f[h][j-1], g[i]^g[h]))
}
}
}

return f[n][k]
}
```

#### TypeScript

```ts
function minXor(nums: number[], k: number): number {
const n = nums.length;
const g: number[] = Array(n + 1).fill(0);
for (let i = 1; i <= n; ++i) {
g[i] = g[i - 1] ^ nums[i - 1];
}

const inf = Number.MAX_SAFE_INTEGER;
const f: number[][] = Array.from({ length: n + 1 }, () => Array(k + 1).fill(inf));
f[0][0] = 0;

for (let i = 1; i <= n; ++i) {
for (let j = 1; j <= Math.min(i, k); ++j) {
for (let h = j - 1; h < i; ++h) {
f[i][j] = Math.min(f[i][j], Math.max(f[h][j - 1], g[i] ^ g[h]));
}
}
}

return f[n][k];
}
```

<!-- tabs:end -->
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
class Solution {
public:
int minXor(vector<int>& nums, int k) {
int n = nums.size();
vector<int> g(n + 1);
for (int i = 1; i <= n; ++i) {
g[i] = g[i - 1] ^ nums[i - 1];
}

const int inf = numeric_limits<int>::max();
vector f(n + 1, vector(k + 1, inf));
f[0][0] = 0;

for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= min(i, k); ++j) {
for (int h = j - 1; h < i; ++h) {
f[i][j] = min(f[i][j], max(f[h][j - 1], g[i] ^ g[h]));
}
}
}

return f[n][k];
}
};
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
func minXor(nums []int, k int) int {
n := len(nums)
g := make([]int, n+1)
for i := 1; i <= n; i++ {
g[i] = g[i-1] ^ nums[i-1]
}

const inf = math.MaxInt32
f := make([][]int, n+1)
for i := range f {
f[i] = make([]int, k+1)
for j := range f[i] {
f[i][j] = inf
}
}
f[0][0] = 0

for i := 1; i <= n; i++ {
for j := 1; j <= min(i, k); j++ {
for h := j - 1; h < i; h++ {
f[i][j] = min(f[i][j], max(f[h][j-1], g[i]^g[h]))
}
}
}

return f[n][k]
}
Loading