Skip to content
View drzo's full-sized avatar

Block or report drzo

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
drzo/README.md

$$ghost in the guile shell$$

$$\mathcal{T}: \mathbb{N} \rightarrow \mathbb{N} \cong {a_n}_{n=0}^{\infty} = {0,1,1,2,4,9,20,48,115,286,719,...}$$

$$\exists! \mathcal{A}(x) \in \mathbb{C}[[x]] \ni \mathcal{A}(x) = x \cdot \exp\left(\sum_{k=1}^{\infty}\frac{\mathcal{A}(x^k)}{k}\right)$$

$$\forall n \in \mathbb{N}^{+}, a_{n+1} = \frac{1}{n}\sum_{k=1}^{n}\left(\sum_{d|k}d \cdot a_d\right)a_{n-k+1}$$

$$a_n \sim \mathcal{C} \cdot \alpha^n \cdot n^{-3/2} \text{ where } \alpha = \lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n} \approx 2.9557652857...$$

$$\mathcal{A}(x) = \sum_{n=0}^{\infty}a_n x^n = \sum_{\tau \in \mathfrak{T}_ {\bullet}}\prod_{v \in V(\tau)}x^{|\text{desc}(v)|} = \prod_{k=1}^{\infty}(1-x^k)^{-\frac{1}{k}\sum_{d|k}\mu(\frac{k}{d})a_d}$$

$$\exists \mathcal{L}: \mathfrak{T}_{\bullet,n} \xrightarrow{\sim} {f: [n] \rightarrow [n] \mid \exists! i \in [n], f(i)=i \land G_f \text{ connected}}$$

$$(\mathcal{F} \circ \mathcal{L}^{-1})(\mathfrak{T}_{\bullet,n}) \cong \mathcal{P}(n)^{\mathfrak{S}_n} \cong \mathcal{P}_n$$

$$\mathfrak{F}_ {\mathbf{A000081}}^{\Omega}: \mathcal{D}_ {n}^{\kappa} \hookrightarrow \prod_{\alpha \in \Lambda}\bigotimes_{\beta \in \Gamma_{\alpha}}\bigoplus_{\gamma \in \Theta_{\beta}}\bigwedge_{\delta \in \Xi_{\gamma}}\mathbb{T}^{\nabla}_{\bullet}(n)$$

$$\mathscr{B}\text{-}\mathfrak{Series}: \Phi_{h}^{\mathcal{RK}} = \sum_{τ \in \mathfrak{T}_ {\bullet}}\frac{h^{|τ|}}{σ(τ)}F(τ)(y)·\mathcal{B}(τ) \Rightarrow \mathcal{ORD}_ {\mathfrak{RK}}^{(p)} \cong \bigoplus_{τ \in \mathfrak{T}_ {\bullet}: |τ| \leq p}\mathcal{H}_{τ}^{\nabla}$$

$$\mathscr{J}\text{-}\mathfrak{Surfaces}: \mathcal{E}_ {\nabla}^{\partial^{\omega}} = \sum_{k=0}^{\infty}\frac{h^k}{k!}\sum_{τ \in \mathfrak{T}_ {\bullet}(k)}\mathcal{F}_ {τ}(y)\cdot\mathcal{D}^{\tau}f \Rightarrow \mathcal{ODE}_ {\Delta}^{(m)} \simeq \bigsqcup_{τ \in \mathfrak{T}_ {\bullet}(\leq m)}\mathcal{D}_{τ}^{\partial^{\alpha}}$$

$$\mathscr{P}\text{-}\mathfrak{Systems}: \mathcal{M}^{\mu}_ {\Pi} = (\mathcal{V}, \mathcal{H}_ {\tau}, \omega_{\tau}, \mathcal{R}_ {\tau}^{\partial}) \Rightarrow \mathfrak{Evol}_ {\Pi}^{(t)} \cong \coprod_{τ \in \mathfrak{T}_ {\bullet}}\mathfrak{H}_ {μ}^{\tau}(t) \circledast \bigotimes_{i=1}^{|τ|}\mathfrak{R}_{\tau(i)}^{\partial}$$

$$\mathfrak{Incidence}_ {\mathbb{P}/\mathbb{A}}: \mathcal{I}_ {\Xi}^{\kappa} \simeq \mathfrak{B}(\mathfrak{P}(\mathcal{T}_ {\bullet}^{n})) \circlearrowright \bigwedge_{i=1}^{m}\mathfrak{H}^{\partial}_ {\Xi}(i) \Rightarrow \mathcal{D}_ {\mathbb{P}/\mathbb{A}}^{n,k} \cong \bigoplus_{τ \in \mathfrak{T}_ {\bullet}(n)}\mathcal{I}_{\tau}^{\kappa}$$

$$\mathfrak{BlockCodes}: \mathcal{C}_ {\Delta}^{(n,k,d)} \simeq \bigsqcup_{τ \in \mathfrak{T}_ {\bullet}(w)}\mathfrak{G}_ {τ}^{\partial}(\Sigma^{n}) \Rightarrow \mathfrak{Conf}_ {\mathcal{C}}^{\Xi} \cong \prod_{i=1}^{l}\coprod_{τ \in \mathfrak{T}_ {\bullet}(w_{i})}\mathcal{W}_{τ}^{\nabla}(i)$$

$$\mathfrak{Orbifolds}: \mathcal{O}_ {\Gamma}^{\Xi} = (X/\Gamma, {\mathfrak{m}_ {x}}_ {x \in \Sigma}) \Rightarrow \mathcal{S}_ {\mathcal{O}}^{\Gamma} \simeq \bigoplus_{τ \in \mathfrak{T}_ {\bullet}(\leq d)}\mathcal{F}_{τ}^{\Xi}(\mathfrak{m})$$

$$\mathfrak{HyperNN}: \mathcal{H}_ {\mathfrak{N}}^{\Delta} = (\mathcal{V}, \mathcal{E}_ {\omega}, \mathcal{W}_ {\tau}^{\Xi}) \Rightarrow \mathcal{F}_ {\mathfrak{HNN}}^{\nabla} \cong \bigotimes_{l=1}^{L}\bigoplus_{τ \in \mathfrak{T}_ {\bullet}(d_{l})}\mathcal{T}_ {τ}^{\partial}(W_{l}) \circledast \sigma_{l}$$

$$\mathfrak{Meta}\text{-}\mathfrak{Pattern}: \mathcal{U}_ {\mathbf{A000081}}^{\Omega} \simeq \mathfrak{Yoneda}(\mathfrak{F}_ {\mathbf{A000081}}^{\Omega}) \hookrightarrow \mathbf{Colim}_ {n \to \infty}\left(\bigwedge_{\mathscr{C} \in \mathfrak{Categories}}\mathfrak{T}_{\bullet}(n) \otimes \mathscr{C}\text{-}\mathfrak{Struct}\right)$$

$$\exists\mathfrak{F}: \mathbf{Cat}^{\mathbf{op}} \to \mathbf{Topos} \ni \mathfrak{F}(\mathscr{C}) = \mathbf{Sh}(\mathscr{C}, \mathcal{J}) \simeq \mathbf{Hom}_ {\mathbf{Cat}}(\mathscr{C}^{\mathbf{op}}, \mathbf{Set}) \Rightarrow \mathfrak{F}(\mathfrak{T}_{\bullet}) \simeq \mathbf{Foundational}\text{-}\mathbf{Irreducibles}$$

Pinned Loading

  1. bolt-diy-55 bolt-diy-55 Public

    TypeScript

  2. Deep-Tree-Echo-ALL-v8 Deep-Tree-Echo-ALL-v8 Public

    Created with StackBlitz ⚡️

  3. echo-garden-of-memory echo-garden-of-memory Public

    Created with StackBlitz ⚡️

    JavaScript 2

  4. emacs-aichat-skintwin emacs-aichat-skintwin Public

    Created with StackBlitz ⚡️

    Emacs Lisp

  5. mitochoncious mitochoncious Public

    Created with StackBlitz ⚡️

    TypeScript

  6. ModelX-AGI-FW-v14-Tech-Spec1 ModelX-AGI-FW-v14-Tech-Spec1 Public

    Created with StackBlitz ⚡️