Skip to content

edmeyman/4ts-standard

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

16 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Four Tests Standard (4TS) - Verifiable AI Governance

Version: 1.0.2
Steward: FERZ LLC
License: CC BY-NC-ND 4.0 (specification), MIT (schemas/test vectors)

The TCP/IP layer for AI governance
Ensure consequential AI decisions are stop-capable, owned, replayable, and escalatableβ€”by design.

SSRN ResearchGate

πŸ“„ Academic Publications

πŸ“– Foundational Paper

Verifiable AI Governance: The Four Tests Standard (4TS) and Proof-Carrying Decisions
Edward Meyman | October 2025

Available on:

Establishes formal specification, theoretical foundations, and proof of necessary and sufficient conditions for verifiable AI governance.


How to Cite:

Meyman, E. (2025). Verifiable AI Governance: The Four Tests Standard (4TS) 
and Proof-Carrying Decisions. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5688982

Overview

The Four Tests Standard (4TS) is a vendor-neutral technical specification for verifiable AI governance. It enables organizations to prove that AI systems in regulated industries meet compliance requirements through:

  • Proof-Carrying Decisions (PCDs): Canonical JSON objects encoding all information needed to verify governance at decision boundaries
  • Deterministic Verification: Mathematical acceptance criteria that produce consistent results independent of who verifies
  • Two Replay Modes: State-Replay for byte-exact reproduction, Protocol-Replay for gate-based validation
  • Fail-Closed Design: Actions blocked by default unless approval can be cryptographically proven

The Four Tests

Test Requirement Enforced Through
STOP System can be halted before side-effects Effect-token issuance gated by approval
OWNERSHIP Identified authority signs policy before execution Cryptographic signatures with timestamp ordering
REPLAY Decision can be reproduced at boundary State-Replay or Protocol-Replay modes
ESCALATION Mandatory custody transfer on denial/thresholds Explicit routing with human-in-loop paths

Quick Start

Enable auditors to verify AI compliance mathematically rather than through samplingβ€”deterministic verification at decision boundaries.

Installation

# Clone the repository
git clone https://github.com/edmeyman/4ts-standard.git
cd 4ts-standard

# Install dependencies (Python 3.10+)
pip install -r requirements.txt

Validate Your First PCD

# Validate against test vectors
python tools/validator/quickstart_validate.py --json examples/model-deployment-state-replay.json

# Expected output: PASS

Create Your First PCD

from tools import pcd_builder

pcd = pcd_builder.create_pcd(
    boundary="deploy",
    artifacts={"models": [{"id": "my-model-v1.0", "sha256": "..."}]},
    replay_strategy="state"
)

print(pcd.to_json())

Repository Structure

4ts-standard/
β”œβ”€β”€ README.md                    # This file
β”œβ”€β”€ SPECIFICATION.md             # Complete technical specification (Β§Β§0-11)
β”œβ”€β”€ LICENSE.md                   # Dual license (CC BY-NC-ND 4.0 + MIT)
β”œβ”€β”€ CHANGELOG.md                 # Version history
β”œβ”€β”€ CONTRIBUTING.md              # How to contribute
β”‚
β”œβ”€β”€ schemas/                     # JSON Schema definitions
β”‚   β”œβ”€β”€ pcd.schema.json         # PCD structure (draft 2020-12)
β”‚   └── verifier.config.schema.json  # Verifier configuration
β”‚
β”œβ”€β”€ examples/                    # Concrete PCD examples
β”‚   β”œβ”€β”€ model-deployment-state-replay.json
β”‚   β”œβ”€β”€ rag-system-protocol-replay.json
β”‚   β”œβ”€β”€ llm-tool-inference.json
β”‚   └── etl-pipeline-batch.json
β”‚
β”œβ”€β”€ test-vectors/                # Conformance test suite
β”‚   β”œβ”€β”€ positive/               # Must PASS (8 vectors)
β”‚   β”‚   β”œβ”€β”€ PCD-A1_state_auto_approve.json
β”‚   β”‚   β”œβ”€β”€ PCD-A2_protocol_with_gates.json
β”‚   β”‚   └── PCD-A3_fail_closed_denial.json
β”‚   └── negative/               # Must FAIL with specific errors (5 vectors)
β”‚       β”œβ”€β”€ NC-1_posthoc_signature.json
β”‚       β”œβ”€β”€ NC-2_missing_custody.json
β”‚       β”œβ”€β”€ NC-3_untyped_lineage.json
β”‚       β”œβ”€β”€ NC-4_side_effect_on_denial.json
β”‚       └── NC-5_protocol_gate_fail.json
β”‚
β”œβ”€β”€ tools/                       # Reference implementations
β”‚   β”œβ”€β”€ validator/              # Python reference verifier
β”‚   β”‚   β”œβ”€β”€ quickstart_validate.py
β”‚   β”‚   └── verifier.py
β”‚   └── canonicalizer/          # JSON canonicalization
β”‚       └── canonicalize.py
β”‚
└── docs/                        # Additional documentation
    β”œβ”€β”€ quickstart.md           # Getting started guide
    β”œβ”€β”€ implementation-guide.md # Detailed implementation patterns
    β”œβ”€β”€ faq.md                  # Frequently asked questions
    └── error-catalog.md        # Complete error code reference

Use Cases

4TS supports diverse AI deployment patterns:

Profile PCD Emission Replay Mode Key Considerations
LLM Tools Per tool action with external effects State or Protocol Typed lineage for tool I/O
RAG Systems Per response triggering workflows Protocol (frozen index) Gates on answerability/attribution
Model Deployment At deployment and policy changes State or Protocol (eval gates) Pre-exec policy signature required
BPMN/ETL Per job with external writes State or Protocol Compensating actions for rollbacks
Agentic Systems Per plan execution Protocol with explicit gates Sub-PCDs for high-risk steps

Conformance

To claim 4TS conformance, implementers must:

  1. Pass all test vectors: 3 positive (PASS), 5 negative (expected failures with correct error codes)
  2. Publish conformance claim:
    Tool@Version β€’ PCD-1 β€’ Bundle-1.0.2 β€’ 8/8 β€’ sha256:manifest_hash β€’ logs_link
    
  3. Implement core verification: PCD schema validation, signature verification, replay logic, fail-closed enforcement

See SPECIFICATION.md Β§7 for complete conformance requirements.

Implementation Profiles

Healthcare/Life Sciences

  • Boundary: Model deployment for diagnostic/treatment decisions
  • Replay: State-Replay with frozen training/test sets
  • Gates: AUROC, calibration error, demographic parity
  • Regulatory: FDA 510(k), EU MDR alignment

Financial Services

  • Boundary: Inference-level for credit/trading decisions
  • Replay: Protocol-Replay with deterministic risk metrics
  • Gates: Accuracy, fairness (disparate impact), attribution
  • Regulatory: SR 11-7, ECOA, MiFID II alignment

Government/Defense

  • Boundary: Deploy and policy-change for mission-critical systems
  • Replay: State-Replay with air-gapped verification
  • Gates: Security clearance checks, operational safety thresholds
  • Regulatory: NIST AI RMF, DoD AI principles

Documentation

Community & Support

Contributing

We welcome contributions! Please see CONTRIBUTING.md for:

  • Code of conduct
  • How to submit issues and pull requests
  • Development workflow
  • Testing requirements

Related Standards & Documents

  • Deterministic AI Governance - Executive Guide - Business rationale and minimum governance bar
  • JSON Schema draft 2020-12 - Schema specification standard
  • RFC 3339 (ISO 8601) - Timestamp format
  • SHA-256 (FIPS 180-4) - Cryptographic hashing
  • EdDSA/ECDSA - Digital signature algorithms

Version History

Version Date Changes
1.0.0 2025-09 Initial release with core standard
1.0.1 2025-10 Added adoption profiles, clarified gate format, expanded error codes
1.0.2 2025-11 Added traceability matrix, glossary, concrete PCD examples

See CHANGELOG.md for detailed changes.

License

  • Specification Text: CC BY-NC-ND 4.0

    • Attribution required
    • Non-commercial use
    • No derivatives
  • Schemas & Test Vectors: MIT License

    • Permissive use for implementation

See LICENSE.md for complete terms.

For commercial licensing inquiries: contact@ferzconsulting.com


Β© 2025 FERZ LLC | Vendor-neutral open standard for verifiable AI governance