https://drive.google.com/file/d/1szE_3IFeeR5-WK1p4GEbuyg1xlWRdH4O/view?usp=sharing
Results
Validation Accuracy: 38.0%
Model predicts 4 different classes:
- belly_pain : 11 predictions ( 13.9%)
- burping : 22 predictions ( 27.8%)
- discomfort : 10 predictions ( 12.7%)
- hungry : 36 predictions ( 45.6%)
Per-class Accuracy:
- belly_pain : 30.8% (4/13)
- burping : 76.9% (10/13)
- discomfort : 18.8% (3/16)
- hungry : 59.1% (13/22)
- tired : 0.0% (0/15)
I borrowed from:
Since the dataset is too imbalanced, I ueed some augmentation techniques to balance the dataset.
- --target for the number of target data after balancing
python balance_data.py cry_data --target 60 --strategy hybridAfter balanced:



