Skip to content

A decentralized virtual filesystem with low latency caching.

License

Notifications You must be signed in to change notification settings

endomorphosis/ipfs_kit_py

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1,584 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IPFS Kit Python

Production Ready Python 3.12+ Version 0.3.0 License: AGPL-3.0

IPFS Kit Python is a comprehensive, production-ready Python toolkit for building distributed storage applications on IPFS. It provides high-level APIs, advanced cluster management, AI/ML integration, and seamless MCP (Model Context Protocol) server support for modern decentralized applications.

🎯 What Can You Do With This?

For Developers

  • Build Decentralized Apps: High-level Python API for IPFS without complexity
  • Scale with Clusters: Multi-node cluster management with automatic replication
  • Integrate AI Models: Store and retrieve ML models/datasets on IPFS
  • Create Storage Services: Production-ready foundation for IPFS-based services

For Data Scientists

  • Distributed Datasets: Store and share large datasets across IPFS network
  • Model Versioning: Track and distribute ML models with content addressing
  • Reproducible Research: Immutable data storage with cryptographic verification
  • Collaborative Workflows: Share data and models via IPFS with team members

For DevOps/SRE

  • High Availability: Multi-node clusters with leader election and failover
  • Observability: Built-in metrics, logging, and monitoring
  • Container Native: Docker and Kubernetes ready deployment
  • Auto-Healing: Automatic error detection and recovery system

✨ Key Features

Core IPFS Operations

  • 🌐 High-Level API: Simplified Python interface wrapping IPFS complexity
  • 📦 Content Management: Add, get, pin, and manage content with ease
  • 🔗 IPNS Support: Mutable pointers to immutable IPFS content
  • 📊 Directory Operations: Work with IPFS directories and file structures
  • 🔍 Content Discovery: Find and retrieve content across the IPFS network

Advanced Cluster Management

  • 🔄 Multi-Node Clusters: Deploy 3+ node clusters with role hierarchy
  • 👑 Leader Election: Automatic leader selection and failover
  • 🎭 Role-Based: Master, Worker, and Leecher role management
  • 📈 Auto-Scaling: Automatically replicate content based on demand
  • 🔗 Peer Management: Dynamic peer discovery and connection handling
  • 💾 Distributed Storage: Spread content across multiple nodes

AI/ML Integration

  • 🤖 Model Registry: Store and version ML models on IPFS
  • 📊 Dataset Management: Manage large datasets with IPFS chunking
  • �� Framework Support: LangChain, LlamaIndex, Transformers integration
  • 📉 Metrics Tracking: Model performance metrics and visualization
  • 🧮 Distributed Training: Share training data across nodes
  • 🎯 Vector Search: GraphRAG and knowledge graph integration

MCP Server

  • 🌟 Production Ready: Full-featured MCP server implementation
  • 🛠️ Tool Integration: Expose IPFS operations as MCP tools
  • 🔌 Plugin System: Extensible architecture for custom tools
  • 📡 Real-Time: WebSocket support for streaming operations
  • 🎨 Dashboard: Web-based management and monitoring interface
  • 🔐 Secure: Built-in authentication and authorization

Storage & Performance

  • 📦 Tiered Storage: Multi-tier caching (memory, SSD, network)
  • ⚡ High Performance: Async/await throughout for concurrency
  • 🔄 Write-Ahead Log: Crash recovery and data consistency
  • 🗜️ Compression: Automatic compression for large files
  • 📊 Metadata Index: Fast content lookup and search
  • 🚀 Prefetching: Predictive content loading for speed

Operations & Monitoring

  • 🔍 Observability: Prometheus metrics, structured logging, tracing
  • 🏥 Health Checks: Built-in health endpoints for monitoring
  • 🔧 Auto-Healing: Detect and fix common errors automatically
  • 📈 Performance Metrics: Real-time performance tracking
  • 🎛️ Configuration: Flexible YAML/JSON configuration
  • 🔔 Alerting: Integration with monitoring systems

Deployment & Integration

  • 🐳 Docker Ready: Multi-arch Docker images (AMD64, ARM64)
  • ☸️ Kubernetes: Helm charts and operator support
  • 🔄 CI/CD: GitHub Actions workflows included
  • 🌐 Cloud Native: Deploy on any cloud provider
  • 🔌 Extensible: Plugin system for custom functionality
  • 📚 Well Documented: Comprehensive guides and examples

🏗️ Architecture

┌─────────────────────────────────────────────────────────────┐
│                     Applications Layer                      │
│   (Your App, CLI, Web Dashboard, API Services)              │
└───────────────────────────┬─────────────────────────────────┘
                            │
┌───────────────────────────▼─────────────────────────────────┐
│                    High-Level API                           │
│  ┌──────────┐  ┌──────────┐  ┌──────────┐  ┌────────────┐   │
│  │  IPFS    │  │ Cluster  │  │  AI/ML   │  │   MCP      │   │
│  │  Ops     │  │  Mgmt    │  │  Tools   │  │  Server    │   │
│  └──────────┘  └──────────┘  └──────────┘  └────────────┘   │
└───────────────────────────┬─────────────────────────────────┘
                            │
┌───────────────────────────▼─────────────────────────────────┐
│                   Core Services Layer                       │
│  ┌──────────┐  ┌──────────┐  ┌──────────┐  ┌────────────┐   │
│  │ Tiered   │  │  WAL &   │  │ Metadata │  │   Pin      │   │
│  │  Cache   │  │ Journal  │  │  Index   │  │  Manager   │   │
│  └──────────┘  └──────────┘  └──────────┘  └────────────┘   │
└───────────────────────────┬─────────────────────────────────┘
                            │
┌───────────────────────────▼─────────────────────────────────┐
│                    IPFS Daemon Layer                        │
│  ┌──────────┐  ┌──────────┐  ┌──────────┐  ┌────────────┐   │
│  │   Kubo   │  │  Cluster │  │  Lotus   │  │  Lassie    │   │
│  │  (IPFS)  │  │ Service  │  │(Filecoin)│  │ (Retrieval)│   │
│  └──────────┘  └──────────┘  └──────────┘  └────────────┘   │
└─────────────────────────────────────────────────────────────┘

🗄️ Storage Architecture & Backends

Multi-Backend Storage System

IPFS Kit supports 6 integrated storage backends for maximum flexibility and redundancy:

  1. IPFS/Kubo - Decentralized content-addressed storage
  2. Filecoin/Lotus - Long-term archival with economic incentives
  3. S3-Compatible - AWS S3, MinIO, and other S3-compatible services
  4. Storacha (Web3.Storage) - Web3 storage built on IPFS + Filecoin
  5. HuggingFace - ML model and dataset storage
  6. Lassie - High-performance IPFS retrieval client

Multi-Tier Storage Strategy

┌─────────────────────────────────────────────────────────────┐
│  Tier 1: Memory Cache (100MB default)                       │
│  • Fastest access (microseconds)                            │
│  • Hot content, recently accessed                           │
│  • ARC algorithm (Adaptive Replacement Cache)               │
└────────────────────────┬────────────────────────────────────┘
                         │ Auto-promotion/demotion
┌────────────────────────▼────────────────────────────────────┐
│  Tier 2: Disk Cache (1GB+ default)                          │
│  • Fast persistent storage (milliseconds)                   │
│  • Warm content, frequently accessed                        │
│  • Heat-based eviction, zero-copy mmap                      │
└────────────────────────┬────────────────────────────────────┘
                         │ Overflow & long-term
┌────────────────────────▼────────────────────────────────────┐
│  Tier 3: IPFS Network                                        │
│  • Distributed content-addressed storage                    │
│  • Peer discovery, automatic replication                    │
│  • DHT-based content routing                                │
└────────────────────────┬────────────────────────────────────┘
                         │ Backup & durability
┌────────────────────────▼────────────────────────────────────┐
│  Tier 4: Cloud Backends (S3, Storacha, Filecoin)            │
│  • Long-term archival, geographical distribution            │
│  • Economic persistence, compliance storage                 │
│  • Cross-region replication                                 │
└─────────────────────────────────────────────────────────────┘

Storage Backend Configuration

from ipfs_kit_py.high_level_api import IPFSSimpleAPI

# Initialize with multiple backends
api = IPFSSimpleAPI(
    storage_backends={
        'ipfs': {'enabled': True},
        'filecoin': {
            'enabled': True,
            'lotus_path': '/path/to/lotus'
        },
        's3': {
            'enabled': True,
            'bucket': 'my-ipfs-backup',
            'region': 'us-west-2'
        },
        'storacha': {
            'enabled': True,
            'token': 'your_token',
            'space': 'your_space_did'
        }
    }
)

# Content automatically distributed across backends
cid = api.add("important_data.txt", backends=['ipfs', 'filecoin', 's3'])

See Also: Storage Backends Documentation

🔄 Replica Management

Replication Strategies

IPFS Kit provides sophisticated replica management for high availability and data durability:

Cluster-Based Replication:

# Set replication factor for automatic distribution
api = IPFSSimpleAPI(role="master")

# Add content with 3 replicas across cluster
result = api.cluster_add(
    "dataset.tar.gz",
    replication_factor=3,  # Distribute to 3 nodes
    replication_policy="distributed"  # Strategy: distributed, local-first, geo-aware
)

# Check replication status
status = api.cluster_status(result['cid'])
print(f"Replicas: {len(status['peers'])} nodes")
print(f"Locations: {status['peer_locations']}")

Pin Management with Replication:

# Pin with min/max replica constraints
api.pin_add(
    cid,
    replication_min=2,  # Minimum 2 copies
    replication_max=5,  # Maximum 5 copies
    replication_priority="high"  # Auto-repair if below min
)

# Monitor replica health
health = api.get_replication_health(cid)
# Returns: {'total': 3, 'healthy': 3, 'degraded': 0, 'locations': [...]}

Replication Policies:

  • Distributed: Spread replicas across maximum geographic/network distance
  • Local-First: Keep replicas in nearby nodes first, then expand
  • Geo-Aware: Place replicas in specific regions or datacenters
  • Cost-Optimized: Balance between redundancy and storage costs
  • Latency-Optimized: Replicate to nodes with best access patterns

Automatic Repair:

# Enable auto-repair for critical content
api.enable_auto_repair(
    cid,
    check_interval=3600,  # Check every hour
    repair_threshold=2,   # Repair if below 2 replicas
    target_replicas=3     # Maintain 3 replicas
)

See Also: Cluster Management, Pin Management

💾 Multi-Tier Caching System

Advanced Caching with ARC Algorithm

IPFS Kit implements a sophisticated Adaptive Replacement Cache (ARC) with multiple tiers:

Cache Tiers:

  1. Memory Cache (T1/T2)

    • ARC algorithm balances recency vs frequency
    • Configurable size (default: 100MB)
    • Submillisecond access times
    • Automatic size-based decisions
  2. Disk Cache

    • Persistent across restarts
    • Heat-based eviction (access patterns + recency)
    • Memory-mapped for zero-copy access
    • Configurable size (default: 1GB+)
  3. Network Cache

    • IPFS network acts as distributed cache
    • Content-addressed retrieval
    • Peer caching benefits

Cache Configuration

from ipfs_kit_py.tiered_cache import TieredCacheManager

# Custom cache configuration
cache = TieredCacheManager(
    config={
        'memory_cache_size': 500 * 1024 * 1024,  # 500MB
        'disk_cache_size': 10 * 1024 * 1024 * 1024,  # 10GB
        'disk_cache_path': '/fast/ssd/cache',
        'enable_mmap': True,  # Zero-copy for large files
        'eviction_policy': 'heat',  # heat, lru, lfu
        'promotion_threshold': 3,  # Access count for promotion
    }
)

# Cache operations (automatic tier selection)
cache.put(cid, content)  # Intelligent tier placement
content = cache.get(cid)  # Fastest available tier

# Cache statistics
stats = cache.get_stats()
print(f"Hit rate: {stats['hit_rate']:.2%}")
print(f"Memory: {stats['memory_usage']}, Disk: {stats['disk_usage']}")

Cache Policies

Heat Scoring - Combines multiple factors:

  • Access frequency (recent access count)
  • Recency (time since last access)
  • Content size (smaller = higher priority)
  • Access pattern (sequential vs random)

Automatic Optimization:

  • Content promoted from disk → memory on repeated access
  • Large files use memory-mapped I/O (no duplication)
  • Rarely accessed content demoted to network tier
  • Cache pre-warming for predictable workloads

See Also: Tiered Cache Documentation

📁 VFS Buckets & Virtual Filesystem

Virtual Filesystem (VFS) Operations

IPFS Kit provides a POSIX-like virtual filesystem on top of IPFS, enabling familiar file operations:

from ipfs_kit_py.vfs_manager import get_global_vfs_manager

vfs = get_global_vfs_manager()

# File operations (like regular filesystem)
vfs.mkdir("/data/projects")
vfs.write("/data/projects/notes.txt", "Project notes...")
content = vfs.read("/data/projects/notes.txt")

# Directory operations
files = vfs.ls("/data/projects")
vfs.mv("/data/projects/old", "/data/archive/old")
vfs.rm("/data/temp/cache.db")

# Batch operations
vfs.copy_recursive("/data/input", "/data/processed")

VFS Buckets

Buckets are isolated namespaces within the VFS for organizing content:

# Create and manage buckets
vfs.create_bucket("ml-models", quota="10GB", policy="hot")
vfs.create_bucket("datasets", quota="100GB", policy="warm")
vfs.create_bucket("archive", quota="1TB", policy="cold")

# Bucket operations
vfs.write("/ml-models/resnet50.h5", model_data)
vfs.set_bucket_policy("ml-models", {
    'replication': 3,
    'cache_priority': 'high',
    'backup_schedule': 'daily'
})

# List buckets and usage
buckets = vfs.list_buckets()
for bucket in buckets:
    print(f"{bucket['name']}: {bucket['used']}/{bucket['quota']}")

VFS Features

Journaling & Change Tracking:

# Filesystem journal tracks all changes
journal = vfs.get_journal(since="2024-01-01")
for entry in journal:
    print(f"{entry['timestamp']}: {entry['operation']} {entry['path']}")

# Replicate changes to other nodes
vfs.replicate_journal(target_node="node2.example.com")

Metadata & Indexing:

# Automatic metadata extraction and indexing
vfs.write("/docs/paper.pdf", pdf_data, 
    metadata={'author': 'Smith', 'year': 2024})

# Enhanced pin index for fast lookup
results = vfs.search(query="machine learning", content_type="pdf")

See Also: VFS Management, Filesystem Journal

🧠 GraphRAG & Knowledge Graphs

Intelligent Search with GraphRAG

IPFS Kit integrates GraphRAG (Graph-based Retrieval Augmented Generation) for semantic search and knowledge management:

Automatic Content Indexing:

# All VFS operations auto-index content
vfs.write("/docs/research.md", markdown_content)
# → Automatic entity extraction, relationship mapping, graph building

# Search across indexed content
results = api.search_text("quantum computing applications")
results = api.search_graph("quantum computing", max_depth=2)
results = api.search_vector("semantic similarity query", threshold=0.7)

Knowledge Graph Features

Entity Recognition:

  • Automatic extraction of people, places, organizations, concepts
  • Relationship mapping between entities
  • RDF triple store for structured knowledge
  • Graph analytics (centrality, importance scoring)

Search Methods:

  1. Text Search - Full-text with relevance scoring
  2. Graph Search - Traverse knowledge graph connections
  3. Vector Search - Semantic similarity using embeddings
  4. SPARQL Queries - Structured RDF queries
  5. Hybrid Search - Combine multiple methods
# Hybrid search combines all methods
results = api.search_hybrid(
    query="AI model deployment",
    search_types=["text", "graph", "vector"],
    limit=20,
    min_score=0.6
)

# SPARQL for structured queries
results = api.search_sparql("""
    SELECT ?model ?accuracy ?dataset
    WHERE {
        ?model rdf:type :MLModel .
        ?model :accuracy ?accuracy .
        ?model :trainedOn ?dataset .
        FILTER (?accuracy > 0.95)
    }
""")

Graph Analytics:

# Analyze knowledge graph
stats = api.search_stats()
print(f"Entities: {stats['entity_count']}")
print(f"Relationships: {stats['relation_count']}")
print(f"Indexed documents: {stats['document_count']}")

# Find important entities
important = api.get_top_entities(limit=10, metric="centrality")

See Also: GraphRAG Documentation, Knowledge Graph

🔐 Configuration & Secrets Management

Secure Credential Management

IPFS Kit provides a unified credential manager for securely storing API keys, tokens, and credentials:

from ipfs_kit_py.credential_manager import CredentialManager

cred_manager = CredentialManager()

# Add credentials for different services
cred_manager.add_s3_credentials(
    name="production",
    aws_access_key_id="AKIA...",
    aws_secret_access_key="secret...",
    region_name="us-west-2"
)

cred_manager.add_storacha_credentials(
    name="default",
    api_token="your_token",
    space_did="did:web:..."
)

cred_manager.add_filecoin_credentials(
    name="mainnet",
    api_key="fil_api_key"
)

# Retrieve credentials securely
s3_creds = cred_manager.get_s3_credentials("production")
storacha_token = cred_manager.get_storacha_credentials()

Configuration Management

YAML Configuration:

# ~/.ipfs_kit/config.yaml
storage:
  backends:
    ipfs:
      enabled: true
      api_addr: "/ip4/127.0.0.1/tcp/5001"
    
    filecoin:
      enabled: true
      lotus_path: "/path/to/lotus"
    
    s3:
      enabled: true
      credential_name: "production"
      bucket: "ipfs-backup"
      region: "us-west-2"
    
    storacha:
      enabled: true
      credential_name: "default"

cache:
  memory_size: 500MB
  disk_size: 10GB
  disk_path: "/fast/ssd/cache"

cluster:
  role: "master"
  replication_factor: 3
  peers:
    - "/ip4/10.0.0.2/tcp/9096"
    - "/ip4/10.0.0.3/tcp/9096"

vfs:
  buckets:
    ml-models:
      quota: 10GB
      policy: hot
      replication: 3
    datasets:
      quota: 100GB
      policy: warm
      replication: 2

Environment Variables

# Credentials
export IPFS_KIT_S3_ACCESS_KEY="AKIA..."
export IPFS_KIT_S3_SECRET_KEY="secret..."
export W3_STORE_TOKEN="storacha_token"
export FILECOIN_API_KEY="fil_api_key"

# Configuration
export IPFS_PATH="/custom/ipfs/path"
export IPFS_KIT_CONFIG="/custom/config.yaml"
export IPFS_KIT_CACHE_DIR="/fast/ssd/cache"

# Feature flags
export IPFS_KIT_ENABLE_GRAPHRAG="true"
export IPFS_KIT_ENABLE_AUTO_HEALING="true"

Security Best Practices

Credential Storage:

  • Store credentials in ~/.ipfs_kit/credentials.json with chmod 600
  • Never commit credentials to version control
  • Use environment variables in CI/CD
  • Consider system keyring integration for production

Configuration Security:

  • Separate configs for dev/staging/prod
  • Use secrets management services (AWS Secrets Manager, Vault)
  • Rotate credentials regularly
  • Audit access logs

See Also: Credential Management, Secure Credentials Guide

🚀 Quick Start

Installation

# Install core features
pip install ipfs_kit_py

# Install with AI/ML support
pip install ipfs_kit_py[ai_ml]

# Install with all features
pip install ipfs_kit_py[full]

# Development installation
git clone https://github.com/endomorphosis/ipfs_kit_py.git
cd ipfs_kit_py
pip install -e .[dev]

Basic Usage

from ipfs_kit_py.high_level_api import IPFSSimpleAPI

# Initialize
api = IPFSSimpleAPI()

# Add content
result = api.add("Hello, IPFS!")
cid = result['cid']
print(f"Content added: {cid}")

# Retrieve content
content = api.get(cid)
print(f"Retrieved: {content}")

# Pin content for persistence
api.pin(cid)

# List all pins
pins = api.list_pins()

Cluster Operations

from ipfs_kit_py.high_level_api import IPFSSimpleAPI

# Initialize as cluster master
api = IPFSSimpleAPI(role="master")

# Add content to cluster (distributed across nodes)
result = api.cluster_add("large_file.dat", replication_factor=3)

# Check replication status
status = api.cluster_status(result['cid'])
print(f"Replicated on {len(status['peers'])} nodes")

# List cluster peers
peers = api.cluster_peers()

AI/ML Integration

from ipfs_kit_py.high_level_api import IPFSSimpleAPI
import pandas as pd

api = IPFSSimpleAPI()

# Store dataset
df = pd.read_csv("training_data.csv")
result = api.ai_dataset_add(
    dataset=df,
    metadata={
        "name": "customer_data_v1",
        "version": "1.0",
        "description": "Customer behavior dataset"
    }
)

# Retrieve dataset later
dataset_cid = result['cid']
loaded_df = api.ai_dataset_get(dataset_cid)

CLI Usage

# Start MCP server with dashboard
ipfs-kit mcp start --port 8004

# Check server status
ipfs-kit mcp status

# View deprecation warnings
ipfs-kit mcp deprecations

# Start 3-node cluster
python tools/start_3_node_cluster.py

📚 Documentation

Comprehensive documentation available in docs/:

🎓 Use Cases & Examples

1. Decentralized Application Storage

# Store application data immutably
api = IPFSSimpleAPI()
user_data = {"user_id": 123, "preferences": {...}}
cid = api.add(json.dumps(user_data))['cid']

# Share CID with users - data is permanently accessible
return f"ipfs://{cid}"

2. ML Model Distribution

# Publish trained model
model_path = "model.h5"
result = api.ai_model_add(
    model=load_model(model_path),
    metadata={"architecture": "ResNet50", "accuracy": 0.95}
)

# Others can load your model
model = api.ai_model_get(result['cid'])

3. Content Distribution Network

# Deploy content across cluster
api = IPFSSimpleAPI(role="master")
for file in website_files:
    api.cluster_add(file, replication_factor=5)

# Content automatically available on all nodes

4. Data Backup & Archival

# Backup with verification
result = api.add("important_data.zip", pin=True)
cid = result['cid']

# Later verification
assert api.exists(cid), "Backup lost!"
restored_data = api.get(cid)

🔧 Configuration

Basic Configuration

from ipfs_kit_py.high_level_api import IPFSSimpleAPI

api = IPFSSimpleAPI(
    role="master",  # master, worker, or leecher
    resources={
        "max_memory": "2GB",
        "max_storage": "100GB"
    },
    cache={
        "memory_size": "500MB",
        "disk_size": "5GB"
    },
    timeouts={
        "api": 60,
        "gateway": 120
    }
)

Environment Variables

# IPFS configuration
export IPFS_PATH=/path/to/.ipfs
export IPFS_KIT_CLUSTER_MODE=true

# MCP server
export IPFS_KIT_MCP_PORT=8004
export IPFS_KIT_DATA_DIR=~/.ipfs_kit

# Performance tuning
export IPFS_KIT_CACHE_SIZE=1GB
export IPFS_KIT_MAX_CONNECTIONS=50

🧪 Testing

# Run all tests
pytest

# Run specific test suite
pytest tests/unit/
pytest tests/integration/

# Run with coverage
pytest --cov=ipfs_kit_py --cov-report=html

# Run cluster tests
pytest tests/test_cluster_startup.py -v

🤝 Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📋 Requirements

  • Python: 3.12+ required
  • System: Linux (primary), macOS (supported), Windows (experimental)
  • Memory: 4GB minimum, 8GB recommended for clusters
  • Storage: 10GB minimum, 50GB+ recommended for production
  • Network: Internet access for IPFS network connectivity

🗺️ Roadmap

  • Enhanced GraphRAG integration
  • S3-compatible gateway
  • WebAssembly support
  • Mobile SDK (iOS/Android)
  • Enhanced analytics dashboard
  • Multi-region cluster support

📜 License

This project is licensed under the AGPL-3.0 License - see the LICENSE file for details.

🙏 Acknowledgments

Built with:

📞 Support

📊 Project Status

  • ✅ Core IPFS operations - Production ready
  • ✅ Cluster management - Production ready
  • ✅ MCP server - Production ready
  • ✅ AI/ML integration - Beta
  • ✅ Auto-healing - Beta
  • 🚧 GraphRAG - In development
  • 📋 S3 Gateway - Planned

Version: 0.3.0
Status: Production Ready
Maintained by: Benjamin Barber (@endomorphosis)

About

A decentralized virtual filesystem with low latency caching.

Resources

License

Stars

Watchers

Forks

Packages

 
 
 

Contributors 6