This repository contains the code and benchmark suite for RTSpMSpM, a novel approach that leverages NVIDIA’s hardware-accelerated ray tracing (RT Cores) to speed up Sparse Matrix × Sparse Matrix Multiplication (SpMSpM). This project demonstrates the feasibility and benefits of mapping sparse matrix operations to the ray tracing pipeline.
- Languages: C++, Python
- GPU Frameworks: CUDA 12.3, NVIDIA OptiX 8.0.0, cuSPARSE
- Build Tools: CMake 3.22, GCC 7.5.0
- Containers: Docker 27.3.1 with NVIDIA support
- Datasets: SuiteSparse Matrix Collection
RTSpMSpM/
├── cuSparse/ # GPU baseline using cuSPARSE
├── Dockerfile/ # Docker build scripts
├── optixSpMSpM/ # OptiX SDK and build system
│ ├── build/ # Compiled binaries and CMake output
│ └── src/
│ ├── data/ # Input Datasets
│ ├── support/
│ ├── sutil/
│ └── optixSpMSpM/ # Core ray tracing-based SpMSpM logic
└── Tool/
└── Script/
├── AE_test.py # Main script to launch experiments and benchmark
├── install.sh # Compile program
└── download_dataset.sh # Benchmark automation script
git clone https://github.com/escalab/RTSpMSpM.git
cd RTSpMSpMcd Dockerfile
./build_image.sh./start_image.sh./run.shcd RTSpMSpM/scripts
./install.shIf runned the installed script, skip to step 3: To run the experiment
cd /home/RTSpMSpM/cuSparse/src
makemkdir -p /home/RTSpMSpM/optixSpMSpM/build
cd /home/RTSpMSpM/optixSpMSpM/build
cmake ../src
makepython3 /home/RTSpMSpM/scripts/AE_test.py-
Artifact Availability: Public
📦 Zenodo Archive
💻 GitHub Repo -
Expected Output:
Execution time (latency in milliseconds) for sparse matrix benchmarks, shown in logs or console output. -
Evaluation Time:
- Setup: ~10 minutes
- Experiment Runtime: 2–3 hours
-
Hardware Requirements:
- GPU: NVIDIA GPU with compute capability 5.0+ (7.5 recommended)
- CPU: Original Hardware Intel Core i7 14700K
- RAM: Original Hardware 128GB DDR4
- Disk Space: up to ~2GB per datasets
-
Software Requirements:
- CUDA 12.3
- Docker 27.3.1 (or cmake 3.22 + gcc 7.5.0 if building natively)
- nvidia-docker recommended for easy setup
-
Licensing:
- Code: MIT License
- Datasets: Original SuiteSparse licenses
If you use this artifact in your research, please cite the corresponding ISCA 2025 paper:
RT+SpMSpM: Harnessing Ray Tracing for Efficient Sparse Matrix Computations, ISCA 2025.