- Parsed OpenSARShip dataset and retrieve all PATCH_CAL images.
- Used CFAR to create bounding boxes and calculate 14 scale-variant features used in training.
- Resized all images to 64 x 64 x 2 (Stacked VH and VV polarisations).
- Split dataset to 70 - 20 - 10 (Train - Val - Test) using stratified split to maintain same distribution of classes.
- Augment dataset using oversampling for fishing classes and undersampling for cargo classes.
- Standardise images.
pip install -r requirements.txtpython data_preparation.pySet learning parameters on the config object in main.py then run below command.
python main.py