Instructions to build a minimal Triton container for CMS.
-
Checkout:
git clone git@github.com:fastmachinelearning/server -b buildpy_revamp_main
-
Build:
./build.py \ --target-platform linux -j 24 --no-container-interactive \ --version 2.60.0 --container-version r25.08 --use-buildbase \ --enable-backend ensemble python pytorch onnxruntime tensorflow \ --image pytorch nvcr.io/nvidia/pytorch:25.08-py3 \ --backend-tag onnxruntime r25.08_fix \ --backend-org onnxruntime https://github.com/fastmachinelearning \ --backend-tag tensorflow r25.06 \ --extra-backend-cmake-arg tensorflow TRITON_TENSORFLOW_DOCKER_IMAGE "nvcr.io/nvidia/tensorflow:25.02-tf2-py3" \ --override-backend-cmake-arg onnxruntime TRITON_ENABLE_ONNXRUNTIME_OPENVINO OFF \ --enable-endpoint grpc http \ --enable-repoagent checksum \ --enable-feature logging stats metrics gpu_metrics cpu_metrics tracing nvtx gpu \ -v &> log_build.log &
-
Tag for later use:
docker tag tritonserver:latest fastml/triton-cms:25.08-py3
-
Add PyTorch Geometric libraries (based on triton-torchgeo-gat-example):
docker build -t fastml/triton-torchgeo:25.08-py3-geometric -f Dockerfile.torchgeo -m 16g . &> log_build_geo.log &
-
Push to DockerHub:
docker push fastml/triton-torchgeo:25.08-py3-geometric
This automatically triggers the Apptainer conversion and cvmfs synchronization via unpacked.