Skip to content

fastmachinelearning/build_triton

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 

Repository files navigation

Build Triton

Instructions to build a minimal Triton container for CMS.

Server build

  1. Checkout:

    git clone git@github.com:fastmachinelearning/server -b buildpy_revamp_main
  2. Build:

    ./build.py \
    --target-platform linux -j 24 --no-container-interactive \
    --version 2.60.0 --container-version r25.08 --use-buildbase \
    --enable-backend ensemble python pytorch onnxruntime tensorflow \
    --image pytorch nvcr.io/nvidia/pytorch:25.08-py3 \
    --backend-tag onnxruntime r25.08_fix \
    --backend-org onnxruntime https://github.com/fastmachinelearning \
    --backend-tag tensorflow r25.06 \
    --extra-backend-cmake-arg tensorflow TRITON_TENSORFLOW_DOCKER_IMAGE "nvcr.io/nvidia/tensorflow:25.02-tf2-py3" \
    --override-backend-cmake-arg onnxruntime TRITON_ENABLE_ONNXRUNTIME_OPENVINO OFF \
    --enable-endpoint grpc http \
    --enable-repoagent checksum \
    --enable-feature logging stats metrics gpu_metrics cpu_metrics tracing nvtx gpu \
    -v &> log_build.log &
  3. Tag for later use:

    docker tag tritonserver:latest fastml/triton-cms:25.08-py3

PyTorch Geometric libraries

  1. Add PyTorch Geometric libraries (based on triton-torchgeo-gat-example):

    docker build -t fastml/triton-torchgeo:25.08-py3-geometric -f Dockerfile.torchgeo -m 16g . &> log_build_geo.log &
  2. Push to DockerHub:

    docker push fastml/triton-torchgeo:25.08-py3-geometric

This automatically triggers the Apptainer conversion and cvmfs synchronization via unpacked.

About

Build Triton inference server container for CMS

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published