High-resolution analysis with N = 10000
Extended domain L = 5000.0000000000000
Number of zeros analyzed = 30
Polynomial scaling degree = 7
Testing: Standard Berry-Keating Correlation coefficient: 0.00000000 First 5 scaled eigenvalues: λ_ 1 = 0.19193651 λ_ 2 = 0.19193651 λ_ 3 = 0.19193651 λ_ 4 = 0.19193651 λ_ 5 = 0.19193651
Testing: Modified Berry-Keating (α=2.0) Correlation coefficient: 0.00000000 First 5 scaled eigenvalues: λ_ 1 = -2.20045060 λ_ 2 = -2.20045060 λ_ 3 = -2.20045060 λ_ 4 = -2.20045060 λ_ 5 = -2.20045060
Testing: Log-potential (β=1.0) Correlation coefficient: 0.00000000 First 5 scaled eigenvalues: λ_ 1 = 1.39654226 λ_ 2 = 1.39654226 λ_ 3 = 1.39654226 λ_ 4 = 1.39654226 λ_ 5 = 1.39654226
Polynomial Degree = 7
Eigenvalue Statistics: Range: [ 14.15345763,101.30532570] Mean: 63.47247429
Correlation Analysis: Linear correlation: 0.99999578 R-squared: 0.99999156 Linear fit: y = 1.00000000 * x + -0.00000000
Difference Statistics: Mean absolute difference: 0.06009891 Standard deviation: 0.03947569 Maximum difference: 0.15116297 Minimum difference: 0.00507044
| Index | Zeta Zero | Eigenvalue | Scaled λ | Difference | Rel. Error |
|---|
1 | 14.134725 | 14.153458 | 14.141204 | 0.006478 | 0.05%
2 | 21.022040 | 20.985198 | 20.993944 | 0.028096 | 0.13%
3 | 25.010858 | 25.008607 | 25.023565 | 0.012708 | 0.05%
4 | 30.424876 | 30.427473 | 30.429947 | 0.005070 | 0.02%
5 | 32.935062 | 32.988169 | 32.978714 | 0.043653 | 0.13%
6 | 37.586178 | 37.573281 | 37.540176 | 0.046002 | 0.12%
7 | 40.918719 | 41.018660 | 40.971200 | 0.052481 | 0.13%
8 | 43.327073 | 43.336038 | 43.282598 | 0.044475 | 0.10%
9 | 48.005151 | 47.932079 | 47.878219 | 0.126932 | 0.26%
10 | 49.773832 | 49.907701 | 49.858577 | 0.084744 | 0.17% 11 | 52.970321 | 53.110215 | 53.074446 | 0.104125 | 0.20% 12 | 56.446248 | 56.432451 | 56.416289 | 0.029958 | 0.05% 13 | 59.347044 | 59.239685 | 59.242658 | 0.104386 | 0.18% 14 | 60.831779 | 60.833886 | 60.847984 | 0.016206 | 0.03% 15 | 65.112544 | 65.094552 | 65.136072 | 0.023528 | 0.04% 16 | 67.079811 | 67.117401 | 67.169365 | 0.089555 | 0.13% 17 | 69.546402 | 69.522402 | 69.583554 | 0.037153 | 0.05% 18 | 72.067158 | 71.975877 | 72.042142 | 0.025016 | 0.03% 19 | 75.704691 | 75.564928 | 75.630331 | 0.074360 | 0.10% 20 | 77.144840 | 77.028248 | 77.090555 | 0.054285 | 0.07% 21 | 79.337375 | 79.252907 | 79.307877 | 0.029498 | 0.04% 22 | 82.164607 | 82.274521 | 82.315770 | 0.151163 | 0.18% 23 | 84.708891 | 84.582284 | 84.611698 | 0.097193 | 0.11% 24 | 87.425233 | 87.319691 | 87.335860 | 0.089373 | 0.10% 25 | 88.809293 | 88.905690 | 88.915629 | 0.106336 | 0.12% 26 | 92.000329 | 92.125182 | 92.128448 | 0.128119 | 0.14% 27 | 94.651269 | 94.581360 | 94.587006 | 0.064263 | 0.07% 28 | 95.870635 | 95.822807 | 95.832615 | 0.038020 | 0.04% 29 | 98.831782 | 98.754151 | 98.782156 | 0.049626 | 0.05% 30 | 101.317851 | 101.305326 | 101.358016 | 0.040165 | 0.04%