This repository demonstrates my learning and practical skills in Python programming and NumPy, essential for the role of a Data Analyst. It contains hands-on notebooks where I have implemented fundamental concepts, numerical computations, and data manipulation exercises.
These notebooks serve as a foundation for data analysis, statistical computation, and data-driven decision making.
- Variables & Data Types (int, float, string, boolean)
- Collections: lists, tuples, sets, dictionaries
- Conditional Statements (
if,elif,else) - Loops (
for,while) - Functions: definition, parameters, return values
- Basic Error Handling (
try/except) - Practice exercises demonstrating problem-solving skills
- Creating and initializing arrays:
np.array(),np.zeros(),np.ones(),np.arange() - Indexing, slicing, and modifying arrays
- Array operations: element-wise addition, subtraction, multiplication, division
- Broadcasting for operations on arrays of different shapes
- Statistical functions:
np.mean(),np.median(),np.std(),np.sum() - Linear algebra: dot products, matrix multiplication
- Random sampling using
np.random - Reshaping and resizing arrays
- Data Structures
SeriesandDataFrame- Creating and converting between them
- Reading & Writing Data
pd.read_csv(),pd.read_excel(),to_csv(), etc.
- Data Exploration & Inspection
.head(),.info(),.describe(),.shape,.dtypes
- Indexing, Selection & Filtering
.loc,.iloc, boolean indexing- Conditional filtering
- Data Cleaning
- Handling missing values (
.isnull(),.dropna(),.fillna()) - Removing duplicates
- Changing data types
- Handling missing values (
- Manipulation & Transformation
- Adding, deleting, renaming columns
- Applying functions with
.apply(),.map() - Sorting, reindexing, resetting index
- Grouping & Aggregation
.groupby()+ aggregate functions (sum, mean, count, etc.)pivot_tableandcrosstab
- Merging, Joining & Concatenation
pd.merge(),pd.concat(),.join()
- Time Series & Date Handling
- Parsing dates, resampling, rolling windows
- Basic Data Visualization with Pandas
- Plotting with
.plot()(line, histogram, bar) - Integrating with Matplotlib / Seaborn if needed
- Plotting with
- Python 3.x
- NumPy
- Google Colab / Jupyter Notebook
Click the Open in Colab badges above to interactively explore and run the notebooks.
- Clone the repository:
git clone https://github.com/garimaakashyap/python-basics.git