Last updated: 01/12/2021
Table : Comparative Analysis of Classification Accuracy
| activation function | loss function | Optimizer | learning rate | learning rate dacay | epoch | total loss | learning time | final accuracy |
|---|---|---|---|---|---|---|---|---|
| Relu | MSE | Gradient descent | 0.01 | every 50, *=0.96 | 100 | 0.001 | 2h | 98% |
Table : Procedure
| index | 1 | 2 | 3 |
|---|---|---|---|
| 1 | layer | normalization | activation function |
| 2 | normalization | activation function | convolution layer |
Table : Data Augmentation
| Method | notation | code |
|---|---|---|
| Random erase | ||
| Cutout | ||
| MixUp | ||
| CutMix | ||
| Style transfer GAN | ||
| Mosaic | ||
| Random Croping | tf.keras.layers.experimental.preprocessing.RandomCrop() tf.image.random_crop() |
Table : Loss Functin and Optimizer Equation
| activation function | activation equation | loss function | loss equation | Optimizer | Optimizer notation |
|---|---|---|---|---|---|
| Sigmoid | |||||
| Relu | MSE | Gradient descent | |||
| Leacky Relu | |||||
| ELU | |||||
| tanh | |||||
| maxout |
Table : Weight Initialization
| Weight Initialization | notation | code |
|---|---|---|
| Random Normal | tf.keras.initializers.RandomNormal() |
|
| Xavier (=Glorot) | tf.keras.glorot_uniform() |
|
| He (for Relu) | tf.keras.initializers.he_uniform() |
Table : Regularization
| Regularization | notation | code |
|---|---|---|
| Dropout | Random Node Turn off | tf.keras.layers.Dropout(rate) (0.0<rate<1.0) |
| GaussianDropout | sqrt(rate / (1 - rate)) | tf.keras.layers.GaussianDropout(rate) |
| DropBlock (for CNN) | drop range of features | |
| Spatial Dropout | tf.keras.layers.SpatialDropout2D() |
|
| L1 Regularization | ||
| L2 Regularization | ||
| Early stoppoing | stop epoch training | tf.keras.callbacks.EarlyStopping() |
Table : Normalization - Internal Covariate Shift Solution