Skip to content
guydegnol edited this page Nov 3, 2023 · 16 revisions

Data

Economics

World Bank Poverty and Inequality data

bulkhours.get_data("world.poverty")

Show columns info > https://github.com/owid/poverty-data/blob/main/datasets/pip_codebook.csv
Column Info
country
year
reporting_level
welfare_type
ppp_version
survey_year
survey_comparability
headcount_ratio_international_povline
headcount_ratio_lower_mid_income_povline
headcount_ratio_upper_mid_income_povline
headcount_ratio_100
headcount_ratio_1000
headcount_ratio_2000
headcount_ratio_3000
headcount_ratio_4000
headcount_ratio_40_median
headcount_ratio_50_median
headcount_ratio_60_median
headcount_international_povline
headcount_lower_mid_income_povline
headcount_upper_mid_income_povline
headcount_100
headcount_1000
headcount_2000
headcount_3000
headcount_4000
headcount_40_median
headcount_50_median
headcount_60_median
avg_shortfall_international_povline
avg_shortfall_lower_mid_income_povline
avg_shortfall_upper_mid_income_povline
avg_shortfall_100
avg_shortfall_1000
avg_shortfall_2000
avg_shortfall_3000
avg_shortfall_4000
avg_shortfall_40_median
avg_shortfall_50_median
avg_shortfall_60_median
total_shortfall_international_povline
total_shortfall_lower_mid_income_povline
total_shortfall_upper_mid_income_povline
total_shortfall_100
total_shortfall_1000
total_shortfall_2000
total_shortfall_3000
total_shortfall_4000
total_shortfall_40_median
total_shortfall_50_median
total_shortfall_60_median
income_gap_ratio_international_povline
income_gap_ratio_lower_mid_income_povline
income_gap_ratio_upper_mid_income_povline
income_gap_ratio_100
income_gap_ratio_1000
income_gap_ratio_2000
income_gap_ratio_3000
income_gap_ratio_4000
income_gap_ratio_40_median
income_gap_ratio_50_median
income_gap_ratio_60_median
poverty_gap_index_international_povline
poverty_gap_index_lower_mid_income_povline
poverty_gap_index_upper_mid_income_povline
poverty_gap_index_100
poverty_gap_index_1000
poverty_gap_index_2000
poverty_gap_index_3000
poverty_gap_index_4000
mean
median
decile1_avg
decile2_avg
decile3_avg
decile4_avg
decile5_avg
decile6_avg
decile7_avg
decile8_avg
decile9_avg
decile10_avg
decile1_share
decile2_share
decile3_share
decile4_share
decile5_share
decile6_share
decile7_share
decile8_share
decile9_share
decile10_share
decile1_thr
decile2_thr
decile3_thr
decile4_thr
decile6_thr
decile7_thr
decile8_thr
decile9_thr
gini
mld
polarization
palma_ratio
s80_s20_ratio
p90_p10_ratio
p90_p50_ratio
p50_p10_ratio
index
iso
m49
region1
region2
continent
Show code def get_poverty(self, timeopt=None): timeopt = self.data_info["timeopt"] if "timeopt" in self.data_info else None df = self.read_raw_data(self.raw_data) return geo_format(df, timeopt)

World Bank Poverty and Inequality data (with gpx extra info)

bulkhours.get_data("world.mappoverty")

Show columns info > https://github.com/owid/poverty-data/blob/main/datasets/pip_codebook.csv
Column Info
pop_est
continent
name
iso_a3
gdp_md_est
geometry
year
reporting_level
welfare_type
ppp_version
survey_year
survey_comparability
headcount_ratio_international_povline
headcount_ratio_lower_mid_income_povline
headcount_ratio_upper_mid_income_povline
headcount_ratio_100
headcount_ratio_1000
headcount_ratio_2000
headcount_ratio_3000
headcount_ratio_4000
headcount_ratio_40_median
headcount_ratio_50_median
headcount_ratio_60_median
headcount_international_povline
headcount_lower_mid_income_povline
headcount_upper_mid_income_povline
headcount_100
headcount_1000
headcount_2000
headcount_3000
headcount_4000
headcount_40_median
headcount_50_median
headcount_60_median
avg_shortfall_international_povline
avg_shortfall_lower_mid_income_povline
avg_shortfall_upper_mid_income_povline
avg_shortfall_100
avg_shortfall_1000
avg_shortfall_2000
avg_shortfall_3000
avg_shortfall_4000
avg_shortfall_40_median
avg_shortfall_50_median
avg_shortfall_60_median
total_shortfall_international_povline
total_shortfall_lower_mid_income_povline
total_shortfall_upper_mid_income_povline
total_shortfall_100
total_shortfall_1000
total_shortfall_2000
total_shortfall_3000
total_shortfall_4000
total_shortfall_40_median
total_shortfall_50_median
total_shortfall_60_median
income_gap_ratio_international_povline
income_gap_ratio_lower_mid_income_povline
income_gap_ratio_upper_mid_income_povline
income_gap_ratio_100
income_gap_ratio_1000
income_gap_ratio_2000
income_gap_ratio_3000
income_gap_ratio_4000
income_gap_ratio_40_median
income_gap_ratio_50_median
income_gap_ratio_60_median
poverty_gap_index_international_povline
poverty_gap_index_lower_mid_income_povline
poverty_gap_index_upper_mid_income_povline
poverty_gap_index_100
poverty_gap_index_1000
poverty_gap_index_2000
poverty_gap_index_3000
poverty_gap_index_4000
mean
median
decile1_avg
decile2_avg
decile3_avg
decile4_avg
decile5_avg
decile6_avg
decile7_avg
decile8_avg
decile9_avg
decile10_avg
decile1_share
decile2_share
decile3_share
decile4_share
decile5_share
decile6_share
decile7_share
decile8_share
decile9_share
decile10_share
decile1_thr
decile2_thr
decile3_thr
decile4_thr
decile6_thr
decile7_thr
decile8_thr
decile9_thr
gini
mld
polarization
palma_ratio
s80_s20_ratio
p90_p10_ratio
p90_p50_ratio
p50_p10_ratio
index
iso
m49
region1
region2
Show code def get_mappoverty(self, **kwargs): return get_mapgeneric(get_poverty(self, **kwargs))

World Bank Gdp data

bulkhours.get_data("world.gdp")

Show columns info > https://github.com/owid/poverty-data/blob/main/datasets/pip_codebook.csv
Column Info
country
year
gdp
index
iso
m49
region1
region2
continent
Show code def get_gdp(self, timeopt=None, **data_info): timeopt = self.data_info["timeopt"] if "timeopt" in self.data_info else None df = self.read_raw_data(self.raw_data) df = df.set_index("country").stack().to_frame().reset_index() df.columns = ["country", "year", "gdp"]
return geo_format(df, timeopt)

World Bank Gdp data (with gpx extra info)

bulkhours.get_data("world.mapgdp")

Show columns info > https://github.com/owid/poverty-data/blob/main/datasets/pip_codebook.csv
Column Info
pop_est
continent
name
iso_a3
gdp_md_est
geometry
year
gdp
index
iso
m49
region1
region2
Show code def get_mapgdp(self, **kwargs): return get_mapgeneric(get_gdp(self, **kwargs))

Global economic data

bulkhours.get_data("world.macro")

Show columns info
Column Info
country
annual_income
corruption_index
cost_index
monthly_income
purchasing_power_index
gdp_per_capita
unemployment_rate
tourists_in_millions
receipts_in_billions
receipts_per_tourist
percentage_of_gdp
index_x
iso_x
m49_x
region1_x
region2_x
continent_x
index_y
iso_y
m49_y
region1_y
region2_y
continent_y
Show code def get_macro(self, **data_info): df = self.read_raw_data(self.raw_data) return geo_format(df, None)

Global economic data (with gpx extra info)

bulkhours.get_data("world.mapmacro")

Show columns info
Column Info
pop_est
continent
name
iso_a3
gdp_md_est
geometry
annual_income
corruption_index
cost_index
monthly_income
purchasing_power_index
gdp_per_capita
unemployment_rate
tourists_in_millions
receipts_in_billions
receipts_per_tourist
percentage_of_gdp
index_x
iso_x
m49_x
region1_x
region2_x
continent_x
index_y
iso_y
m49_y
region1_y
region2_y
continent_y
Show code def get_mapmacro(self, **kwargs): return get_mapgeneric(get_macro(self, **kwargs))

Corruption index per country

bulkhours.get_data("world.corruption")

Show columns info
Column Info
country
annual_income
corruption_index
gdp_per_capita
unemployment_rate
index
iso
m49
region1
region2
continent
Show code def get_corruption(self, show_truth=False, **data_info): show_truth = self.data_info["show_truth"] if "show_truth" in self.data_info else False df = self.read_raw_data(self.raw_data)
if not show_truth:
    df["corruption_index"] = df["corruption_index"].where(
        ~df.index.isin(["Spain", "Japan", "Sweden", "Romania"]), other=np.nan
    )

df = df[["annual_income", "corruption_index", "gdp_per_capita", "unemployment_rate"]]
df = df.dropna(subset=["annual_income", "gdp_per_capita", "unemployment_rate"])

return geo_format(df, None)

Life expectancy versus GDP/capita per country

bulkhours.get_data("world.life_expectancy_vs_gdp_2018")

Show columns info
Column Info
Country
Code
Year
Life expectancy (years)
GDP per capita ($)
annotations
Population
Continent
Show code def get_life_expectancy_vs_gdp_2018(self, **data_info): return self.read_raw_data(self.raw_data) # .dropna()

Evolution du PIB et de ses composantes par rapport au trimestre precedent en volume en %

bulkhours.get_data("gmacro.fr_qgdp")

Show columns info
Column Info
gdp
Importations
consommation_menages
consommation_APU1
capital_fixe
capital_fixe_non_financieres
menages
APU1
Exportations
demaNaNe_interieure
Variations de stocks
Commerce exterieur
date
Show code def get_fr_qgdp(self): data = StringIO( """quarter;gdp;Importations;consommation_menages;consommation_APU1;capital_fixe;capital_fixe_non_financieres;menages;APU1;Exportations;demande_interieure;Variations de stocks;Commerce exterieur 2022-T4;0,1;-1,9;-0,9;0,2;0,8;1,2;-0,2;0,3;-0,3;-0,2;-0,2;0,5 2022-T3;0,2;3,9;0,5;0,2;2,3;3,8;-0,7;1,0;0,8;0,9;0,3;-1,0 2022-T2;0,5;1,5;0,5;0,0;0,3;0,5;-0,1;-0,2;1,0;0,3;0,3;-0,2 2022-T1;-0,2;1,3;-1,0;0,2;0,4;0,2;0,0;1,1;1,7;-0,4;0,1;0,1 2021-T4;0,6;5,0;0,6;0,6;-0,3;-0,2;-0,7;-0,5;2,9;0,4;0,8;-0,6 2021-T3;3,3;0,6;5,4;3,1;0,5;0,9;1,2;-1,6;2,1;3,7;-0,8;0,4 2021-T2;1,1;1,9;1,2;0,6;2,1;1,8;4,0;0,5;2,6;1,2;-0,3;0,1 2021-T1;0,1;1,4;0,5;-0,6;0,7;0,6;0,4;-1,5;-0,4;0,3;0,3;-0,6 2020-T4;-0,9;0,8;-5,5;-0,1;2,5;2,0;6,1;0,4;3,7;-2,4;0,7;0,8 2020-T3;18,4;17,7;18,2;17,6;24,2;24,8;28,8;17,4;22,4;19,7;-1,9;0,6 2020-T2;-13,5;-19,2;-11,6;-11,8;-14,3;-13,5;-16,3;-12,5;-25,3;-12,3;0,4;-1,6 2020-T1;-5,6;-5,5;-5,2;-3,3;-9,6;-8,8;-14,2;-5,1;-6,8;-5,8;0,6;-0,3 2019-T4;-0,3;-1,0;0,2;0,1;0,3;0,4;0,4;0,3;-1,1;0,2;-0,5;0,0 2019-T3;0,0;-0,4;0,2;0,4;0,8;0,6;0,9;1,2;-1,1;0,4;-0,1;-0,2 2019-T2;0,7;0,0;0,6;0,3;1,7;1,2;1,9;2,6;0,3;0,8;-0,2;0,1 2019-T1;0,7;2,2;0,8;0,1;1,0;0,4;0,4;3,0;0,3;0,7;0,6;-0,6 2018-T4;0,6;1,3;0,2;0,5;0,8;0,3;0,0;3,0;2,2;0,4;-0,1;0,3 2018-T3;0,4;-1,1;0,4;-0,1;0,7;0,6;0,4;1,2;0,2;0,4;-0,4;0,4 2018-T2;0,4;1,0;-0,1;0,3;1,3;1,7;0,7;1,5;0,9;0,3;0,2;-0,1 2018-T1;0,1;0,6;0,4;0,0;0,1;0,1;0,1;0,4;-0,2;0,2;0,1;-0,2 2017-T4;0,6;1,3;0,0;0,1;0,8;1,4;0,4;0,0;2,5;0,2;0,0;0,4 2017-T3;0,9;1,9;0,7;0,5;1,3;1,9;0,6;0,4;1,5;0,8;0,2;-0,1 2017-T2;0,8;-0,1;0,3;0,5;1,1;1,2;1,6;0,1;2,7;0,6;-0,6;0,9 2017-T1;0,8;2,2;0,4;0,1;2,4;3,1;2,1;-0,4;-0,3;0,8;0,8;-0,8 2016-T4;0,6;0,8;0,9;0,4;0,9;0,5;1,5;0,5;1,4;0,8;-0,4;0,2 2016-T3;0,3;2,0;0,0;0,5;0,4;0,0;1,1;-0,5;0,5;0,2;0,6;-0,5 2016-T2;-0,3;-1,7;0,0;0,2;-0,2;-0,9;0,7;0,1;0,2;0,0;-0,9;0,6 2016-T1;0,6;0,6;1,3;0,4;1,1;1,8;0,4;-0,7;-0,2;1,0;-0,1;-0,2 2015-T4;0,2;1,9;-0,1;0,4;1,1;1,1;0,8;1,1;0,9;0,3;0,3;-0,3 2015-T3;0,2;1,8;0,2;0,2;1,2;1,0;0,7;2,8;0,0;0,4;0,4;-0,6 2015-T2;0,1;0,1;0,3;0,2;-0,8;0,4;-0,3;-5,5;1,6;0,0;-0,4;0,5 2015-T1;0,5;2,1;0,5;0,2;1,0;1,6;0,0;0,2;0,9;0,6;0,4;-0,4 2014-T4;0,0;1,1;0,3;0,3;-0,7;-0,6;-0,8;-1,8;1,7;0,1;-0,3;0,2 2014-T3;0,6;1,8;0,3;0,4;0,5;1,5;-1,3;-1,4;1,6;0,4;0,3;-0,1 2014-T2;0,1;1,1;0,6;0,3;-0,3;0,3;-2,1;-1,5;0,0;0,3;0,1;-0,3 2014-T1;0,0;1,0;-0,5;0,3;-0,5;-0,5;-0,8;-1,8;0,7;-0,3;0,4;-0,1 2013-T4;0,6;1,2;0,6;0,3;0,8;1,3;0,4;-1,0;1,2;0,6;0,1;0,0 2013-T3;-0,1;1,0;0,0;0,3;0,1;0,6;-0,1;-1,1;-0,3;0,1;0,2;-0,4 2013-T2;0,7;2,2;0,4;0,5;0,2;0,7;0,0;0,0;2,3;0,4;0,3;0,0 2013-T1;0,1;-0,2;0,0;0,4;-0,6;-0,5;0,3;-0,1;0,0;0,0;0,1;0,1 2012-T4;-0,1;0,0;0,2;0,3;-0,4;-0,2;-0,2;-0,1;0,1;0,1;-0,3;0,0 2012-T3;0,2;0,4;0,1;0,3;0,3;0,6;-0,3;0,7;0,0;0,2;0,2;-0,1 2012-T2;-0,2;0,3;-0,2;0,5;-0,8;-0,9;-2,0;0,6;0,8;-0,2;-0,1;0,1 2012-T1;0,0;0,9;0,2;0,5;-0,5;-1,3;-0,3;0,4;0,5;0,1;0,0;-0,1 2011-T4;0,2;-0,8;-0,4;0,3;1,2;1,5;0,3;0,9;1,8;0,1;-0,7;0,7 2011-T3;0,5;0,1;0,2;0,6;0,6;0,8;-0,5;0,2;0,6;0,4;0,0;0,1 2011-T2;-0,1;-1,2;-1,2;0,1;0,2;0,3;-0,3;-0,6;1,0;-0,6;-0,2;0,6 2011-T1;1,1;3,9;0,5;0,3;0,2;1,0;-0,1;-2,8;2,4;0,4;1,2;-0,5 2010-T4;0,7;0,9;0,8;0,1;0,5;1,2;0,5;-1,7;1,5;0,6;0,0;0,1 2010-T3;0,6;2,8;0,6;0,4;1,3;1,6;1,7;-0,1;1,0;0,7;0,4;-0,5 2010-T2;0,5;4,2;0,3;0,2;0,8;1,4;1,3;-1,0;3,3;0,4;0,3;-0,2 2010-T1;0,3;0,7;0,2;0,1;1,0;1,9;0,9;-0,7;3,7;0,4;-0,8;0,8 2009-T4;0,7;3,7;0,7;0,5;0,5;1,0;-0,1;0,7;0,1;0,7;1,0;-1,0 2009-T3;0,2;1,0;0,0;0,5;-0,6;-0,5;-1,2;0,3;1,8;0,0;0,0;0,2 2009-T2;0,0;-1,9;0,7;0,7;-2,5;-3,5;-2,5;0,9;0,0;0,0;-0,5;0,5 2009-T1;-1,7;-7,1;-0,1;0,7;-4,1;-6,0;-5,3;2,9;-7,5;-0,8;-0,9;0,0 2008-T4;-1,5;-2,7;-0,4;0,8;-3,2;-4,2;-4,5;1,6;-4,7;-0,8;-0,2;-0,5 2008-T3;-0,2;-0,4;0,1;0,5;-0,8;-0,2;-2,9;-0,1;-0,9;0,0;0,0;-0,2 2008-T2;-0,5;-0,8;0,0;0,1;-1,1;-0,9;-1,5;-1,9;-1,5;-0,3;-0,1;-0,2 2008-T1;0,5;1,1;-0,4;0,1;1,6;2,7;-0,3;0,3;2,3;0,2;0,0;0,3 2007-T4;0,2;0,6;0,3;0,2;0,5;1,2;-0,2;-1,3;0,4;0,3;-0,1;-0,1 2007-T3;0,5;0,7;0,9;0,4;1,2;2,4;-0,2;-0,3;0,2;0,9;-0,2;-0,2 2007-T2;0,7;2,8;1,0;0,5;1,2;2,0;0,7;-0,1;1,6;0,9;0,1;-0,4 2007-T1;0,7;1,0;0,6;0,6;1,8;2,7;0,9;1,8;0,3;0,9;0,0;-0,2 2006-T4;0,7;2,6;0,5;0,5;1,5;2,3;0,7;1,0;1,9;0,8;0,1;-0,2 2006-T3;0,1;-0,6;0,2;0,1;0,7;0,9;0,7;-0,1;-1,5;0,3;0,0;-0,2 2006-T2;1,0;1,6;0,6;0,4;1,9;2,5;1,6;0,2;1,5;0,8;0,2;0,0 2006-T1;0,8;0,5;0,8;0,6;0,6;0,3;1,4;-0,9;2,2;0,7;-0,4;0,5 2005-T4;0,7;3,3;0,6;0,1;0,6;0,7;1,3;-1,3;2,3;0,5;0,5;-0,3 2005-T3;0,6;2,5;0,5;0,3;1,0;1,0;1,2;0,7;2,2;0,6;0,0;-0,1 2005-T2;0,3;0,9;0,2;0,4;0,5;0,2;1,7;0,5;1,4;0,3;-0,2;0,1 2005-T1;0,2;0,4;0,6;0,3;0,6;0,8;1,0;0,2;-0,7;0,5;0,0;-0,3 2004-T4;0,8;2,5;1,5;0,3;1,4;1,8;0,8;1,9;2,0;1,1;-0,3;-0,1 2004-T3;0,3;1,8;0,0;0,3;0,3;0,3;0,6;0,3;0,4;0,1;0,5;-0,4 2004-T2;0,6;2,0;0,4;0,5;0,5;0,2;1,1;0,5;1,7;0,5;0,2;0,0 2004-T1;1,0;0,7;0,6;0,6;1,1;1,0;1,3;0,8;0,4;0,7;0,4;-0,1 2003-T4;0,7;1,7;0,3;0,8;0,2;-0,4;0,9;0,7;2,6;0,4;0,0;0,3 2003-T3;0,7;0,9;0,6;0,4;1,7;2,1;1,0;0,9;1,1;0,7;-0,1;0,1 2003-T2;-0,2;-0,7;0,1;0,6;0,0;-0,9;0,5;1,4;-0,8;0,2;-0,3;-0,1 2003-T1;0,1;0,1;0,4;0,0;0,1;-0,5;0,4;1,1;-2,2;0,2;0,5;-0,6 2002-T4;0,2;0,0;0,6;0,7;1,1;0,9;0,7;1,5;0,1;0,7;-0,5;0,0 2002-T3;0,2;0,8;0,6;0,6;0,4;0,3;0,8;0,3;0,4;0,5;-0,2;-0,1 2002-T2;0,4;0,7;0,5;0,9;-0,6;-1,7;0,8;0,7;2,5;0,3;-0,4;0,5 2002-T1;0,6;2,5;0,4;0,2;-0,6;-1,1;0,8;-0,6;1,5;0,2;0,6;-0,2 2001-T4;-0,1;-0,6;0,4;0,3;-0,2;-0,8;0,8;0,6;-1,3;0,3;-0,1;-0,2 2001-T3;0,3;-1,6;0,2;0,3;0,1;0,5;0,4;-0,7;0,1;0,3;-0,5;0,5 2001-T2;0,1;-0,7;0,7;0,2;-0,3;-0,1;-0,1;-0,9;-2,3;0,4;0,2;-0,5 2001-T1;0,5;-1,4;1,0;0,2;0,6;1,2;0,3;-0,3;0,2;0,7;-0,7;0,4 2000-T4;0,8;3,2;0,3;0,2;0,6;1,0;0,0;0,2;4,0;0,3;0,2;0,3 2000-T3;0,7;3,8;0,6;0,3;1,9;3,2;0,1;0,8;2,1;0,8;0,3;-0,4 2000-T2;1,0;4,4;0,7;0,4;1,4;1,3;0,4;2,8;3,5;0,8;0,4;-0,2 2000-T1;1,0;4,3;0,7;0,6;1,7;1,2;1,5;3,2;4,0;0,9;0,2;0,0 1999-T4;1,4;4,4;1,0;0,6;1,9;1,5;1,2;3,3;2,4;1,1;0,8;-0,4 1999-T3;1,1;2,5;2,5;0,6;1,9;2,0;1,4;1,9;3,8;1,9;-1,1;0,4 1999-T2;0,3;1,8;0,4;0,3;1,7;2,1;1,3;1,0;2,1;0,7;-0,5;0,1 1999-T1;1,1;0,9;0,1;0,6;2,3;2,5;2,9;0,8;-0,3;0,7;0,7;-0,3 1998-T4;0,7;0,7;0,6;0,5;1,4;1,3;1,8;0,8;-0,3;0,7;0,2;-0,2 1998-T3;0,7;1,5;1,4;0,0;1,9;1,9;1,8;1,4;1,5;1,1;-0,4;0,0 1998-T2;0,8;2,0;1,0;-0,3;2,0;2,6;1,4;0,8;1,6;0,9;0,0;-0,1 1998-T1;0,9;4,0;0,9;-0,5;1,6;2,2;0,7;0,5;1,7;0,7;0,7;-0,5 1997-T4;1,0;2,8;1,2;-0,2;1,5;2,1;1,0;-0,1;3,0;0,9;-0,1;0,1 1997-T3;1,0;4,3;1,0;0,1;0,6;0,8;1,2;-1,4;3,1;0,6;0,5;-0,2 1997-T2;1,0;2,7;0,2;0,1;1,5;2,4;1,4;-1,3;4,5;0,4;0,1;0,5 1997-T1;0,3;1,8;-0,1;0,1;-1,0;-1,3;0,5;-2,4;3,4;-0,2;0,2;0,4 1996-T4;0,3;1,4;-1,1;0,6;-0,2;0,0;0,7;-1,8;3,1;-0,5;0,3;0,4 1996-T3;0,5;-0,2;1,4;0,4;0,5;0,6;1,1;-0,7;2,0;1,0;-0,9;0,5 1996-T2;0,1;0,4;-0,4;0,7;-0,3;-1,3;0,4;1,0;-0,2;-0,1;0,4;-0,1 1996-T1;0,7;0,9;1,7;0,8;0,8;1,0;0,3;0,2;1,8;1,2;-0,8;0,2 1995-T4;0,0;-0,4;-0,1;0,5;0,1;-0,1;-0,7;1,1;0,7;0,1;-0,4;0,2 1995-T3;0,2;0,6;-0,6;0,4;0,1;0,5;-0,4;-1,0;-0,9;-0,2;0,7;-0,3 1995-T2;0,6;3,3;1,6;0,1;-0,5;-0,7;-0,7;-0,1;2,6;0,8;-0,1;-0,1 1995-T1;0,3;0,0;0,1;-0,3;0,8;1,3;0,5;-1,6;1,5;0,1;-0,2;0,3 1994-T4;0,9;3,8;0,5;0,0;0,4;0,4;1,3;-1,0;4,6;0,4;0,3;0,2 1994-T3;0,9;3,2;0,4;0,0;0,8;1,7;1,5;-1,8;3,1;0,4;0,4;0,0 1994-T2;1,0;3,2;0,8;0,0;1,1;1,5;1,6;0,0;3,6;0,7;0,2;0,1 1994-T1;0,7;2,3;0,0;-0,2;1,6;1,4;1,9;2,7;0,0;0,3;0,8;-0,5 1993-T4;0,2;2,6;0,4;0,2;-0,3;-0,2;0,6;-0,2;3,4;0,2;-0,2;0,2 1993-T3;0,2;0,8;0,1;0,2;-1,3;-1,2;-0,7;-1,1;1,7;-0,2;0,2;0,2 1993-T2;0,0;-3,4;0,7;1,1;-1,8;-1,6;-1,5;-2,1;-2,8;0,2;-0,4;0,1 1993-T1;-0,7;0,2;-1,4;1,1;-1,7;-2,7;-1,3;-0,7;1,8;-0,9;-0,1;0,3 1992-T4;-0,2;-1,8;0,6;1,0;-1,4;-2,2;-1,7;-0,4;-1,3;0,2;-0,5;0,1 1992-T3;-0,1;-1,7;0,5;1,2;-1,1;-1,7;-0,7;-0,1;-0,8;0,3;-0,5;0,2 1992-T2;0,1;-0,8;0,2;0,7;-1,2;-0,9;-2,0;-0,7;0,7;0,0;-0,3;0,3 1992-T1;0,8;3,8;0,1;0,6;0,6;1,0;0,8;1,2;2,2;0,4;0,8;-0,4 1991-T4;0,7;-0,6;0,3;0,9;-0,7;-0,8;-3,4;0,9;2,2;0,2;-0,2;0,6 1991-T3;0,2;0,0;-0,1;0,5;-0,1;-0,5;-1,0;1,2;2,6;0,1;-0,4;0,6 1991-T2;0,4;0,0;0,1;1,3;0,4;0,6;-1,5;1,7;2,8;0,5;-0,6;0,6 1991-T1;0,1;2,9;-0,1;0,9;-0,9;-0,6;-2,7;0,1;0,7;-0,1;0,7;-0,5 1990-T4;0,0;-0,2;0,6;0,6;-0,1;0,0;-0,6;0,0;1,8;0,4;-0,9;0,4 1990-T3;0,5;-0,3;0,0;1,2;0,6;1,4;-2,0;1,0;0,6;0,4;-0,1;0,2 1990-T2;0,5;1,6;0,4;0,3;0,4;0,6;-1,2;1,5;-1,2;0,4;0,7;-0,6 1990-T1;0,4;0,1;1,1;1,2;1,4;1,9;-0,7;2,5;1,3;1,2;-1,0;0,2 1989-T4;1,3;4,2;0,4;0,8;2,0;2,7;0,2;2,1;3,3;0,9;0,7;-0,2 1989-T3;1,1;0,1;1,1;0,6;1,2;1,5;0,5;1,3;-0,4;1,0;0,1;-0,1 1989-T2;1,2;2,6;0,4;0,1;1,6;1,4;3,8;-0,4;2,6;0,6;0,6;0,0 1989-T1;1,2;1,9;1,0;0,6;2,4;3,5;0,7;1,7;4,3;1,2;-0,5;0,5 1988-T4;0,9;1,6;0,8;-0,2;1,6;1,1;3,6;1,0;1,4;0,8;0,1;-0,1 1988-T3;1,3;4,3;1,3;0,6;2,0;2,4;2,2;1,0;3,3;1,3;0,2;-0,2 1988-T2;0,8;0,5;0,5;0,6;1,8;2,0;0,7;2,8;1,5;0,8;-0,2;0,2 1988-T1;1,2;1,8;0,0;1,1;2,5;2,3;2,2;2,9;1,2;0,8;0,6;-0,1 1987-T4;1,4;2,3;1,8;1,3;1,9;2,5;-0,1;2,8;1,9;1,7;-0,2;-0,1 1987-T3;0,7;1,9;0,1;0,8;2,1;2,2;1,4;2,9;2,9;0,7;-0,2;0,2 1987-T2;1,5;2,4;1,3;0,7;2,3;3,0;0,0;3,4;2,6;1,4;0,0;0,0 1987-T1;0,1;4,1;1,0;0,4;0,3;0,4;2,2;-2,3;-0,9;0,7;0,5;-1,0 1986-T4;0,1;-2,5;0,2;0,8;0,8;0,9;0,7;0,9;-1,2;0,5;-0,7;0,4 1986-T3;0,5;3,2;0,5;0,7;0,9;1,3;-0,2;1,2;2,1;0,7;0,1;-0,3 1986-T2;1,1;1,7;1,6;0,7;1,5;1,4;-0,1;3,7;-1,9;1,4;0,6;-0,8 1986-T1;0,4;1,7;0,9;0,5;0,6;1,9;0,2;-2,5;-0,9;0,7;0,2;-0,6 1985-T4;0,4;1,8;1,1;0,8;0,6;0,5;0,7;0,5;1,2;0,9;-0,4;-0,1 1985-T3;0,5;1,9;0,6;0,4;1,4;1,4;1,3;1,5;-1,8;0,7;0,7;-0,9 1985-T2;0,9;0,6;0,5;0,8;1,7;2,7;-1,9;4,0;2,3;0,8;-0,3;0,4 1985-T1;0,3;1,6;1,4;0,8;-0,1;0,0;-0,9;0,6;-0,4;0,9;-0,1;-0,5 1984-T4;-0,1;1,9;-0,7;0,6;0,8;1,7;-1,5;1,5;-0,1;-0,1;0,5;-0,5 1984-T3;0,7;-1,3;0,2;1,2;-0,2;0,6;-3,1;1,5;1,3;0,3;-0,3;0,6 1984-T2;0,4;2,4;0,4;0,7;-0,5;-1,0;0,3;-1,1;3,8;0,2;-0,1;0,3 1984-T1;0,4;1,3;0,4;0,0;0,4;0,8;-1,2;1,0;-0,3;0,3;0,5;-0,4 1983-T4;0,6;0,6;0,5;0,6;-0,5;-0,2;-1,4;-0,4;1,8;0,3;0,0;0,3 1983-T3;0,1;2,6;-0,4;0,7;-0,4;-0,3;-0,5;-1,0;4,0;-0,2;0,0;0,3 1983-T2;0,0;-3,2;-0,2;0,0;-1,1;-1,1;-0,7;-1,9;2,3;-0,4;-0,9;1,2 1983-T1;0,4;-1,3;-0,2;0,5;-0,5;-1,2;0,5;0,0;-1,1;-0,1;0,5;0,1 1982-T4;0,6;-0,2;1,2;0,7;-1,0;0,0;-2,8;-1,2;3,6;0,6;-0,8;0,8 1982-T3;0,0;-1,2;0,0;1,7;-1,5;-2,0;-0,7;-1,5;-0,3;0,0;-0,3;0,2 1982-T2;0,7;2,0;1,0;0,7;0,4;1,4;-2,3;1,8;-2,6;0,8;0,9;-1,0 1982-T1;0,8;0,1;0,8;1,5;-0,6;0,4;-2,8;-0,1;-0,7;0,6;0,4;-0,2 1981-T4;0,6;1,3;1,4;0,7;0,6;1,1;-1,2;2,2;-2,5;1,0;0,4;-0,8 1981-T3;0,7;3,0;0,1;0,9;-0,1;-0,3;-0,5;0,9;3,2;0,2;0,4;0,0 1981-T2;0,7;-0,5;1,5;0,8;0,2;-0,2;0,1;1,1;3,0;1,0;-1,1;0,8 1981-T1;0,3;-1,8;-0,1;0,7;-0,5;-0,8;-1,4;1,2;1,1;0,0;-0,3;0,7 1980-T4;-0,2;-1,7;0,7;0,5;-0,7;-1,1;-0,5;-0,4;1,1;0,3;-1,1;0,6 1980-T3;0,2;0,5;0,7;0,8;-0,1;0,8;-1,6;0,0;-1,0;0,5;-0,1;-0,3 1980-T2;-0,7;-0,5;-1,2;0,8;-0,2;0,7;-1,4;-0,4;-0,9;-0,5;-0,1;-0,1 1980-T1;1,0;3,6;0,8;nd;0,8;1,2;1,3;-0,8;1,5;0,8;0,6;-0,4 1979-T4;0,3;0,2;0,5;nd;1,7;2,5;1,2;0,3;0,5;0,8;-0,6;0,1 1979-T3;1,3;3,9;0,2;nd;2,4;3,7;0,8;1,4;3,8;0,9;0,4;0,0 1979-T2;0,4;0,8;0,7;nd;0,8;1,2;-0,4;1,8;0,6;0,7;-0,2;0,0 1979-T1;1,1;3,3;1,0;nd;-0,7;-1,3;0,5;-1,9;1,9;0,5;0,8;-0,2 1978-T4;1,1;2,7;1,4;nd;1,3;1,3;1,0;1,7;1,6;1,3;0,0;-0,2 1978-T3;0,6;0,4;0,3;nd;0,3;-0,5;1,9;-0,2;1,3;0,5;-0,1;0,2 1978-T2;1,1;1,6;1,6;nd;1,4;1,7;1,1;1,2;1,5;1,5;-0,4;0,0 1978-T1;1,4;2,3;1,2;nd;1,5;1,1;3,9;-1,0;1,3;1,4;0,1;-0,2 1977-T4;0,8;0,3;0,4;nd;-0,4;-1,1;0,9;-0,7;1,7;0,4;0,1;0,3 1977-T3;0,8;-0,4;1,3;nd;0,3;0,1;0,6;0,1;2,3;1,0;-0,7;0,5 1977-T2;0,4;-0,2;0,2;nd;-0,5;0,8;0,5;-6,1;1,8;0,2;-0,2;0,4 1977-T1;1,1;-1,2;0,0;nd;0,9;2,4;-1,9;0,6;0,8;0,3;0,4;0,4 1976-T4;0,7;0,3;1,0;nd;-0,6;-1,1;1,3;-2,6;3,5;0,4;-0,4;0,6 1976-T3;1,2;3,9;1,4;nd;-1,7;-1,3;-2,3;-2,2;1,0;0,5;1,3;-0,6 1976-T2;1,4;4,7;0,9;nd;0,4;-0,7;3,2;-0,8;3,5;0,7;0,9;-0,3 1976-T1;1,0;7,4;1,4;nd;2,3;4,4;0,0;1,2;3,2;1,5;0,2;-0,7 1975-T4;2,1;5,0;1,9;nd;2,0;3,9;-0,6;1,8;1,7;1,9;0,9;-0,7 1975-T3;0,0;1,4;1,6;nd;-1,5;-2,7;-1,6;2,1;-0,1;0,7;-0,5;-0,3 1975-T2;0,0;0,2;0,8;nd;-0,6;-0,5;-2,6;2,6;-0,7;0,6;-0,5;-0,2 1975-T1;-0,8;-6,3;0,2;nd;-2,1;-2,9;-3,0;1,9;-4,1;-0,2;-1,2;0,7 1974-T4;-1,8;-6,1;-0,4;nd;-2,6;-4,5;-1,8;1,1;-0,6;-0,6;-2,2;0,9 1974-T3;1,1;-0,5;0,1;nd;-0,9;-2,1;-0,5;1,8;2,7;0,0;0,5;0,6 1974-T2;0,7;0,7;0,6;nd;0,8;1,4;0,1;-0,1;0,8;0,8;-0,2;0,0 1974-T1;1,6;2,9;0,2;nd;0,4;-0,9;2,5;0,6;4,2;0,4;0,9;0,3 1973-T4;1,2;2,0;2,4;nd;1,2;0,8;2,4;0,2;4,3;1,7;-1,0;0,4 1973-T3;1,5;4,1;0,5;nd;2,3;2,8;2,3;0,3;2,5;1,0;0,8;-0,3 1973-T2;1,4;1,5;0,7;nd;1,8;1,7;2,9;-0,3;2,6;1,1;0,2;0,2 1973-T1;1,8;5,3;2,4;nd;1,4;1,0;1,9;1,1;2,9;1,9;0,2;-0,4 1972-T4;1,6;5,7;0,8;nd;2,0;1,7;2,1;1,7;5,1;1,2;0,4;-0,1 1972-T3;1,4;1,4;2,3;nd;1,5;1,3;2,1;0,6;0,0;1,8;-0,2;-0,2 1972-T2;0,7;1,2;0,2;nd;1,3;1,0;2,1;0,4;3,9;0,7;-0,4;0,5 1972-T1;1,1;8,2;1,6;nd;1,7;0,8;5,0;-0,8;3,9;1,4;0,3;-0,6 1971-T4;1,0;-0,4;1,1;nd;0,9;1,7;0,2;-0,6;0,1;1,0;-0,2;0,1 1971-T3;1,3;5,4;1,5;nd;1,4;3,1;-1,4;1,0;4,3;1,4;0,1;-0,1 1971-T2;1,1;2,6;1,6;nd;1,8;3,0;-0,7;2,3;1,3;1,5;-0,2;-0,2 1971-T1;1,6;-1,3;0,8;nd;3,0;2,1;8,5;-2,1;2,3;1,5;-0,6;0,6 1970-T4;1,3;1,2;2,5;nd;0,2;2,0;-3,3;1,3;2,6;1,7;-0,6;0,2 1970-T3;1,1;4,1;0,6;nd;1,4;0,7;3,1;0,8;1,9;1,0;0,4;-0,3 1970-T2;1,8;3,7;1,2;nd;2,3;1,7;3,6;1,8;4,0;1,5;0,2;0,1 1970-T1;1,5;1,8;2,0;nd;-0,1;1,1;-3,6;1,4;4,6;1,3;-0,2;0,4 1969-T4;1,5;-1,1;-0,8;nd;1,6;-1,2;8,0;-0,2;4,9;0,2;0,4;0,9 1969-T3;1,4;-1,1;1,0;nd;1,4;0,3;3,3;1,7;3,1;1,2;-0,4;0,6 1969-T2;2,1;6,3;2,8;nd;3,7;5,3;1,6;2,1;3,3;2,8;-0,2;-0,5 1969-T1;0,9;4,4;-0,4;nd;-0,4;-0,1;-0,5;0,0;3,6;-0,1;1,1;-0,1 1968-T4;1,1;5,4;2,6;nd;1,7;3,2;-0,5;0,8;-2,6;2,1;0,2;-1,2 1968-T3;8,0;20,1;5,0;nd;9,1;14,3;4,1;2,2;26,5;5,7;1,6;0,8 1968-T2;-5,3;-8,4;-0,5;nd;-5,6;-8,0;0,0;-6,2;-14,1;-1,6;-2,8;-0,9 1968-T1;2,7;5,2;0,1;nd;2,7;2,7;4,4;0,1;6,1;0,9;1,7;0,1 1967-T4;1,0;1,8;0,7;nd;1,7;2,8;0,7;0,0;3,9;1,0;-0,2;0,3 1967-T3;1,1;2,1;1,2;nd;1,3;0,7;3,0;0,5;0,9;1,2;0,1;-0,2 1967-T2;1,2;-1,9;0,8;nd;1,6;1,4;3,2;0,4;2,6;1,0;-0,5;0,6 1967-T1;1,7;4,3;1,5;nd;3,0;2,4;3,2;4,2;3,2;1,9;-0,1;-0,1 1966-T4;0,6;3,4;1,7;nd;0,9;0,9;-0,6;2,8;-1,2;1,4;-0,1;-0,6 1966-T3;1,2;4,2;0,5;nd;1,8;3,0;-0,4;1,7;2,5;0,9;0,4;-0,2 1966-T2;1,6;2,3;1,9;nd;2,1;1,9;3,2;1,3;1,6;1,8;-0,1;-0,1 1966-T1;0,9;3,1;0,9;nd;1,5;2,9;0,9;-1,0;0,4;1,1;0,1;-0,3 1965-T4;1,5;2,2;0,3;nd;3,3;1,8;9,0;0,1;3,0;1,1;0,3;0,1 1965-T3;1,5;1,5;1,7;nd;0,3;0,0;0,3;1,1;2,9;1,2;0,1;0,2 1965-T2;1,8;2,7;2,5;nd;2,3;2,0;2,5;2,6;2,4;2,1;-0,3;0,0 1965-T1;0,5;-1,5;-0,3;nd;0,3;-0,7;0,9;1,8;2,9;0,1;-0,2;0,6 1964-T4;1,4;0,5;1,2;nd;1,4;-0,9;4,6;3,6;4,4;1,2;-0,3;0,5 1964-T3;0,8;-0,3;0,8;nd;2,7;2,0;4,2;2,4;0,7;1,3;-0,7;0,1 1964-T2;1,3;2,1;0,2;nd;1,2;0,8;1,9;1,8;-0,5;0,6;1,0;-0,3 1964-T1;2,2;5,9;2,0;nd;3,3;2,0;5,4;4,5;4,4;2,2;0,2;-0,2 1963-T4;-0,2;4,7;1,3;nd;0,0;2,1;-6,1;1,5;-0,4;0,9;-0,5;-0,7 1963-T3;3,4;2,4;2,0;nd;5,3;3,5;11,4;3,2;3,8;2,7;0,5;0,2 1963-T2;4,5;10,9;2,9;nd;6,0;4,2;3,8;14,2;4,8;3,4;1,7;-0,7 1963-T1;-1,0;0,1;1,7;nd;-0,1;0,5;3,8;-6,3;1,5;1,0;-2,2;0,2 1962-T4;1,1;1,4;0,9;nd;-0,2;-1,1;-0,1;2,3;1,9;0,7;0,4;0,1 1962-T3;1,9;4,1;1,7;nd;2,2;3,1;-0,1;2,5;-0,4;1,7;0,8;-0,5 1962-T2;1,5;-4,1;1,6;nd;1,0;0,7;0,0;2,9;-0,3;1,4;-0,3;0,5 1962-T1;2,2;4,2;3,2;nd;2,0;2,4;0,2;3,3;1,0;2,6;0,0;-0,4 1961-T4;1,8;3,0;1,2;nd;1,5;1,2;1,0;3,4;-0,7;1,4;0,9;-0,5 1961-T3;0,9;0,4;0,9;nd;2,7;2,9;1,8;3,3;0,4;1,4;-0,5;0,0 1961-T2;0,6;4,4;0,9;nd;0,6;-1,1;2,8;3,2;2,4;0,9;-0,1;-0,2 1961-T1;1,4;0,2;2,5;nd;5,3;6,9;3,6;2,8;1,4;2,8;-1,6;0,2 1960-T4;1,1;0,5;1,6;nd;2,3;2,0;3,1;2,3;0,1;1,6;-0,5;0,0 1960-T3;1,7;6,0;1,0;nd;2,7;3,1;2,4;1,7;3,3;1,3;0,6;-0,2 1960-T2;2,5;-1,0;1,4;nd;2,7;3,8;1,5;1,1;0,8;1,5;0,8;0,2 1960-T1;2,0;3,5;2,0;nd;-0,5;-1,5;0,6;0,8;6,8;1,0;0,4;0,6 1959-T4;2,5;7,6;0,8;nd;2,8;4,4;0,3;1,3;5,3;1,2;1,5;-0,2 1959-T3;1,1;0,7;0,7;nd;0,9;0,9;0,0;2,2;4,3;0,7;-0,1;0,5 1959-T2;1,2;4,4;-0,3;nd;2,6;3,8;-0,2;3,2;7,9;0,5;0,2;0,5 1959-T1;0,2;-3,0;0,9;nd;0,3;-0,6;-0,3;4,0;-1,6;0,7;-0,6;0,1 1958-T4;0,3;-2,0;1,7;nd;1,6;1,7;0,0;3,4;4,9;1,4;-1,9;0,9 1958-T3;-0,2;-2,0;-0,5;nd;0,3;-0,6;0,4;2,2;1,7;-0,2;-0,5;0,5 1958-T2;0,4;0,7;0,1;nd;-1,0;-2,6;1,0;0,9;-1,7;-0,2;0,9;-0,3 1958-T1;1,3;0,4;-1,1;nd;3,6;5,8;1,7;-0,6;1,0;0,1;1,1;0,1 1957-T4;0,3;-4,0;0,4;nd;1,1;0,8;2,2;0,0;-0,5;0,4;-0,6;0,5 1957-T3;1,7;-1,4;1,0;nd;1,9;1,8;2,7;1,0;-0,1;1,0;0,4;0,2 1957-T2;0,7;0,9;1,4;nd;-0,9;-3,6;2,9;2,0;1,5;0,7;-0,1;0,1 1957-T1;1,9;4,0;0,7;nd;4,6;6,0;2,6;3,6;5,7;1,5;0,2;0,2 1956-T4;1,5;2,4;1,4;nd;3,4;4,2;1,8;3,3;-0,3;1,7;0,1;-0,4 1956-T3;1,2;4,5;1,8;nd;1,0;0,5;0,6;3,2;1,8;1,5;0,1;-0,4 1956-T2;1,7;9,8;1,6;nd;5,7;9,9;-0,4;3,0;5,1;2,5;-0,2;-0,6 1956-T1;0,8;1,5;2,0;nd;-1,6;-3,3;-0,8;2,5;-6,1;1,2;0,5;-1,0 1955-T4;1,1;4,2;1,6;nd;1,8;2,6;-0,2;2,6;-0,6;1,6;0,1;-0,6 1955-T3;1,5;3,0;1,3;nd;2,5;3,3;1,0;2,5;1,6;1,5;0,1;-0,1 1955-T2;1,4;3,6;2,3;nd;3,8;5,1;2,6;2,3;-0,4;2,3;-0,4;-0,5 1955-T1;1,3;-0,2;1,7;nd;1,0;-1,1;4,1;2,4;0,5;1,3;0,0;0,1 1954-T4;0,7;0,7;0,2;nd;2,0;0,4;5,1;2,6;1,0;0,6;0,1;0,1 1954-T3;1,6;0,5;0,9;nd;4,1;3,8;5,7;3,2;4,1;1,4;-0,3;0,5 1954-T2;1,7;1,4;0,9;nd;4,8;4,9;5,7;3,6;2,6;1,5;0,1;0,2 1954-T1;1,4;3,0;1,2;nd;-0,9;-4,6;5,2;3,6;2,0;0,4;1,1;-0,1 1953-T4;1,6;-1,0;1,1;nd;2,6;1,9;4,1;3,2;5,1;1,2;-0,4;0,8 1953-T3;0,4;0,8;0,5;nd;1,9;1,3;2,8;2,5;-2,9;0,7;0,2;-0,5 1953-T2;1,6;-0,6;1,7;nd;2,1;2,4;1,5;1,6;0,2;1,5;0,0;0,1 1953-T1;1,2;2,6;1,6;nd;3,0;4,5;0,6;1,2;-1,5;1,7;0,2;-0,6 1952-T4;-0,2;-2,2;1,1;nd;-1,5;-3,5;0,7;2,1;-0,3;0,6;-1,1;0,3 1952-T3;1,0;1,0;1,0;nd;0,5;-0,6;1,2;3,6;1,0;0,9;0,1;0,0 1952-T2;-0,5;-4,1;0,6;nd;-2,5;-6,2;2,1;5,4;-0,1;0,1;-1,3;0,6 1952-T1;1,5;-0,7;1,5;nd;0,7;-1,6;3,4;6,9;-1,1;1,4;0,2;-0,1 1951-T4;1,0;3,7;1,0;nd;2,0;0,5;4,9;5,3;-4,4;1,3;1,0;-1,3 1951-T3;1,4;6,2;1,4;nd;1,4;-0,3;6,5;3,0;1,6;1,4;0,7;-0,6 1951-T2;0,8;5,9;0,6;nd;0,1;-1,9;7,7;0,1;-0,6;0,6;1,1;-0,9 1951-T1;0,3;3,2;1,8;nd;5,8;6,9;8,7;-2,3;0,1;2,3;-1,6;-0,4 1950-T4;2,4;6,4;1,3;nd;0,7;-0,4;7,5;-1,7;13,0;1,2;0,0;1,2 1950-T3;2,5;3,5;4,2;nd;2,5;2,5;5,6;-0,6;4,8;3,2;-1,0;0,3 1950-T2;2,5;-2,0;2,2;nd;1,7;1,5;3,3;1,0;3,6;1,9;-0,2;0,8 1950-T1;2,8;9,7;1,6;nd;0,3;-0,6;1,1;3,3;8,1;nd;nd;nd 1949-T4;1,3;-5,6;-0,4;nd;1,1;0,8;0,8;1,9;2,5;nd;nd;nd 1949-T3;1,5;-4,6;2,3;nd;1,3;1,1;1,0;1,9;0,8;nd;nd;nd 1949-T2;0,9;0,0;0,9;nd;1,5;1,3;1,7;1,8;3,1;nd;nd;nd""".replace( "nd", "NaN" ) .replace("-T", "-Q") .replace(",", ".") ) df = pd.read_csv(data, sep=";") df = df.set_index("quarter").astype(float) df["date"] = pd.PeriodIndex(df.index, freq="Q").to_timestamp()
# return get_unemployement()
return df.sort_values("date")

Évolution du produit intérieur brut et de ses composantes

bulkhours.get_data("gmacro.fr_unemployement")

Show columns info
Column Info
Femmes
Femmes_15-24
Femmes_25-49
Femmes_plus_50
Hommes
Hommes_15-24
Hommes_25-49
Hommes_plus_50
Ensemble
Ensemble_15-24
Ensemble_25-49
Ensemble_plus_50
Longue_duree
date
Show code def get_fr_unemployement(self): data = StringIO( """quarter,1975-T1,1975-T2,1975-T3,1975-T4,1976-T1,1976-T2,1976-T3,1976-T4,1977-T1,1977-T2,1977-T3,1977-T4,1978-T1,1978-T2,1978-T3,1978-T4,1979-T1,1979-T2,1979-T3,1979-T4,1980-T1,1980-T2,1980-T3,1980-T4,1981-T1,1981-T2,1981-T3,1981-T4,1982-T1,1982-T2,1982-T3,1982-T4,1983-T1,1983-T2,1983-T3,1983-T4,1984-T1,1984-T2,1984-T3,1984-T4,1985-T1,1985-T2,1985-T3,1985-T4,1986-T1,1986-T2,1986-T3,1986-T4,1987-T1,1987-T2,1987-T3,1987-T4,1988-T1,1988-T2,1988-T3,1988-T4,1989-T1,1989-T2,1989-T3,1989-T4,1990-T1,1990-T2,1990-T3,1990-T4,1991-T1,1991-T2,1991-T3,1991-T4,1992-T1,1992-T2,1992-T3,1992-T4,1993-T1,1993-T2,1993-T3,1993-T4,1994-T1,1994-T2,1994-T3,1994-T4,1995-T1,1995-T2,1995-T3,1995-T4,1996-T1,1996-T2,1996-T3,1996-T4,1997-T1,1997-T2,1997-T3,1997-T4,1998-T1,1998-T2,1998-T3,1998-T4,1999-T1,1999-T2,1999-T3,1999-T4,2000-T1,2000-T2,2000-T3,2000-T4,2001-T1,2001-T2,2001-T3,2001-T4,2002-T1,2002-T2,2002-T3,2002-T4,2003-T1,2003-T2,2003-T3,2003-T4,2004-T1,2004-T2,2004-T3,2004-T4,2005-T1,2005-T2,2005-T3,2005-T4,2006-T1,2006-T2,2006-T3,2006-T4,2007-T1,2007-T2,2007-T3,2007-T4,2008-T1,2008-T2,2008-T3,2008-T4,2009-T1,2009-T2,2009-T3,2009-T4,2010-T1,2010-T2,2010-T3,2010-T4,2011-T1,2011-T2,2011-T3,2011-T4,2012-T1,2012-T2,2012-T3,2012-T4,2013-T1,2013-T2,2013-T3,2013-T4,2014-T1,2014-T2,2014-T3,2014-T4,2015-T1,2015-T2,2015-T3,2015-T4,2016-T1,2016-T2,2016-T3,2016-T4,2017-T1,2017-T2,2017-T3,2017-T4,2018-T1,2018-T2,2018-T3,2018-T4,2019-T1,2019-T2,2019-T3,2019-T4,2020-T1,2020-T2,2020-T3,2020-T4,2021-T1,2021-T2,2021-T3,2021-T4,2022-T1,2022-T2,2022-T3 Femmes,"4,6","4,9","5,2","5,5","5,8","5,9","5,8","5,8","6,1","6,5","6,6","6,5","6,3","6,3","6,6","7,0","7,1","7,2","7,4","7,7","8,0","8,1","8,2","8,4","8,8","9,1","9,3","9,4","9,4","9,5","9,6","9,7","9,6","9,5","9,7","10,0","10,5","10,8","10,9","11,1","11,2","11,1","11,1","10,9","10,8","10,9","11,1","11,2","11,4","11,5","11,3","11,3","11,2","11,0","11,1","11,0","10,8","10,6","10,4","10,3","10,3","10,2","10,1","10,0","10,0","10,1","10,3","10,6","10,8","10,9","11,0","11,1","11,2","11,3","11,6","11,8","12,0","12,1","12,1","11,9","11,8","11,5","11,3","11,4","11,7","11,9","11,9","11,8","11,8","11,8","11,8","11,8","11,6","11,5","11,4","11,4","11,4","11,3","11,1","10,7","10,3","9,9","9,6","9,4","9,2","9,1","8,9","8,8","8,7","8,6","8,7","8,7","9,3","9,4","9,1","9,5","10,0","9,5","9,6","9,5","9,2","9,5","9,9","10,0","10,0","9,6","9,8","8,6","9,0","8,6","8,2","7,8","7,5","7,7","7,8","8,2","8,8","9,3","9,4","9,4","9,4","9,4","9,4","9,8","9,7","9,4","9,5","9,4","9,4","9,8","9,7","10,1","10,2","10,3","10,1","10,1","9,8","9,9","10,1","10,1","9,9","10,0","9,9","9,8","9,7","9,8","10,0","9,9","9,7","9,5","9,4","8,9","9,3","9,1","8,9","8,8","8,7","8,4","8,3","8,1","8,0","6,8","9,0","8,0","7,8","7,9","8,1","7,3","7,3","7,3","7,1" Femmes_15-24,"9,8","10,4","11,1","11,8","12,8","13,1","12,7","12,6","13,5","14,6","15,0","14,7","14,4","14,5","15,7","16,6","16,9","17,3","17,8","18,7","19,7","20,2","20,4","20,9","21,8","22,6","23,2","23,5","23,5","23,8","24,1","24,1","23,8","23,9","24,5","25,6","27,2","28,2","28,5","28,7","28,4","27,5","27,2","26,6","26,1","26,1","26,2","26,0","25,8","25,5","25,0","24,7","24,5","24,1","23,9","23,1","22,5","22,1","21,5","21,6","21,6","21,4","21,2","21,5","21,8","22,4","23,0","23,2","23,8","23,9","24,4","25,0","25,6","26,3","27,0","27,5","28,2","28,9","29,1","29,0","28,7","27,7","26,8","27,1","27,5","28,1","28,7","29,0","29,1","28,8","28,3","27,7","26,6","26,2","26,2","26,3","26,7","26,4","25,4","23,9","22,4","21,3","20,5","20,1","20,0","19,8","19,6","19,9","20,0","19,7","19,4","20,1","22,8","23,3","21,4","23,3","24,4","24,6","24,9","24,8","24,1","24,6","27,2","26,9","27,6","27,4","28,9","25,0","26,4","24,0","22,0","22,7","21,4","21,9","22,1","23,8","25,9","26,6","26,9","26,4","25,9","28,7","28,4","28,1","29,2","27,2","26,5","26,4","26,2","26,5","28,0","30,7","30,0","30,3","29,2","28,5","27,7","26,5","27,1","27,2","27,1","28,2","27,5","26,8","27,3","28,4","29,3","26,9","25,2","26,6","24,2","23,8","25,4","23,0","22,6","22,9","21,5","20,9","21,0","23,0","22,8","24,1","26,0","21,5","21,3","19,6","19,7","15,0","15,8","17,5","16,5" Femmes_25-49,"3,3","3,5","3,7","3,9","4,0","4,0","4,0","4,0","4,1","4,3","4,4","4,4","4,3","4,2","4,4","4,5","4,5","4,6","4,7","4,8","4,9","5,0","5,0","5,2","5,5","5,8","5,9","6,0","6,0","6,1","6,2","6,2","6,2","6,1","6,2","6,4","6,7","6,9","7,0","7,2","7,4","7,6","7,7","7,7","7,7","7,9","8,2","8,4","8,7","8,9","8,8","8,9","8,9","8,8","9,1","9,1","9,1","8,9","8,8","8,7","8,6","8,6","8,5","8,5","8,4","8,4","8,7","9,0","9,2","9,4","9,5","9,5","9,6","9,8","10,0","10,3","10,6","10,7","10,7","10,5","10,3","10,2","10,1","10,2","10,5","10,6","10,6","10,5","10,5","10,6","10,7","10,7","10,6","10,5","10,5","10,5","10,5","10,4","10,2","9,9","9,6","9,3","9,1","8,8","8,7","8,5","8,4","8,2","8,0","8,0","8,1","8,1","8,6","8,6","8,4","8,6","8,9","8,6","8,7","8,6","8,4","8,7","8,7","9,0","8,9","8,2","8,5","7,6","7,7","7,6","7,6","6,9","6,6","6,8","6,9","7,3","7,7","8,1","8,3","8,3","8,3","8,0","8,1","8,6","8,4","8,3","8,6","8,4","8,7","8,9","8,8","8,8","9,0","9,2","8,9","9,0","8,6","9,1","9,2","9,3","9,1","9,0","9,0","8,9","8,9","8,7","8,7","9,1","8,9","8,6","9,0","8,1","8,7","8,5","8,2","7,9","7,8","7,6","7,5","7,1","7,1","5,9","8,0","7,1","7,3","7,2","7,4","6,9","6,7","6,6","6,4" Femmes_plus_50,"2,1","2,2","2,4","2,5","2,6","2,7","2,8","3,0","3,2","3,3","3,3","3,1","2,9","2,9","3,1","3,3","3,5","3,7","3,9","4,2","4,5","4,6","4,6","4,6","4,7","4,7","4,8","4,8","4,8","4,9","5,1","5,1","5,1","5,1","5,1","5,2","5,4","5,5","5,5","5,6","5,7","5,7","5,9","5,8","5,6","5,6","5,6","5,8","6,2","6,4","6,6","6,7","6,6","6,5","6,4","6,4","6,4","6,3","6,2","6,1","6,1","6,0","6,1","6,1","6,3","6,4","6,6","6,8","6,9","6,9","6,8","6,6","6,3","6,2","6,2","6,3","6,2","6,0","6,0","6,0","6,1","6,1","6,0","6,0","6,4","6,5","6,7","6,8","6,9","6,9","6,9","6,9","7,0","7,0","7,0","7,0","6,9","6,9","6,8","6,6","6,4","6,2","6,0","5,7","5,5","5,5","5,5","5,2","5,2","5,4","5,4","5,2","4,8","5,5","5,5","5,9","6,6","5,3","5,3","5,6","5,4","5,0","5,6","5,4","5,3","5,8","5,4","4,8","5,3","4,9","4,5","4,3","4,0","4,4","4,5","4,4","4,8","5,5","5,1","5,9","5,8","5,5","5,6","5,8","5,8","5,5","5,7","5,9","5,4","6,3","5,8","6,1","6,4","6,5","6,6","6,6","6,9","6,6","6,9","6,5","6,2","6,6","6,4","6,5","6,3","6,2","6,8","6,4","6,8","6,3","6,1","6,0","6,0","6,3","6,1","6,5","6,7","6,2","6,1","5,6","5,4","4,0","6,3","5,7","4,8","5,8","5,7","5,5","5,6","5,1","5,3" Hommes,"2,3","2,6","2,8","2,9","2,9","2,8","2,7","2,7","2,9","3,1","3,3","3,3","3,2","3,3","3,5","3,7","3,8","3,8","3,8","3,8","3,7","3,7","3,7","4,0","4,4","4,7","4,9","5,1","5,2","5,3","5,5","5,6","5,6","5,7","5,8","6,1","6,5","6,9","7,2","7,5","7,6","7,6","7,7","7,7","7,7","7,7","7,7","7,6","7,6","7,6","7,5","7,4","7,4","7,2","7,1","6,8","6,6","6,4","6,3","6,3","6,3","6,3","6,3","6,3","6,3","6,4","6,6","6,8","7,1","7,3","7,6","7,9","8,2","8,6","9,0","9,4","9,6","9,6","9,4","9,1","8,8","8,6","8,5","8,7","9,0","9,3","9,4","9,6","9,7","9,7","9,6","9,5","9,2","9,1","9,0","9,1","9,2","9,1","8,8","8,4","8,0","7,6","7,2","6,9","6,6","6,5","6,7","6,9","7,1","7,2","7,2","7,3","7,6","7,7","7,8","8,1","8,1","8,1","8,2","8,3","8,2","8,2","8,2","8,2","8,4","8,4","8,1","8,1","8,0","7,7","7,7","7,1","6,9","6,9","7,1","7,3","8,4","9,1","9,0","9,6","9,4","9,2","9,1","8,7","8,7","8,8","9,0","9,3","9,6","9,6","9,8","10,2","10,5","10,6","10,4","10,2","10,5","10,4","10,5","10,8","10,7","11,0","10,8","10,7","10,7","10,3","9,8","10,2","9,6","9,6","9,6","9,1","9,2","9,1","9,1","8,7","8,8","8,5","8,5","8,3","7,8","7,4","9,0","8,2","8,5","8,0","7,9","7,5","7,4","7,6","7,6" Hommes_15-24,"4,8","5,4","5,8","6,0","6,0","5,8","5,6","5,9","6,6","7,2","7,5","7,2","6,8","6,9","7,5","7,9","8,0","8,0","8,0","8,0","8,2","8,2","8,3","9,0","9,8","10,5","11,1","11,5","11,7","12,0","12,5","12,8","12,9","13,1","13,7","14,6","15,8","17,0","17,8","18,2","18,5","18,0","17,7","17,3","16,9","16,9","16,3","15,8","15,5","15,3","15,1","15,2","15,1","14,6","14,0","13,2","12,5","12,2","12,2","12,5","12,9","13,0","13,0","13,1","12,9","13,2","13,3","13,4","13,7","14,1","15,1","16,0","16,8","17,8","18,6","19,1","19,7","20,1","19,3","18,3","17,4","16,6","16,1","17,0","17,6","18,6","19,1","19,6","19,9","19,8","19,4","18,9","18,4","18,3","18,9","19,5","20,2","19,9","18,9","17,5","16,2","15,4","14,8","14,4","14,2","14,2","14,8","15,3","15,6","15,9","16,6","16,9","16,0","17,7","18,4","19,3","19,2","18,9","19,6","19,4","19,5","18,9","19,9","19,6","21,1","20,7","19,1","21,0","19,1","18,8","18,2","17,7","16,7","17,8","19,1","20,2","22,6","24,1","24,2","24,4","23,5","21,7","23,1","20,4","21,1","21,6","21,0","22,0","22,6","23,7","24,4","25,6","25,1","24,1","23,6","22,5","23,3","24,6","24,4","25,3","25,6","24,3","24,8","25,3","25,3","24,0","23,8","23,7","22,7","23,1","22,2","21,2","21,0","21,3","22,1","19,0","20,7","20,1","19,0","20,4","18,8","20,9","20,3","19,1","20,7","19,4","18,8","17,0","17,3","18,5","19,8" Hommes_25-49,"1,7","1,9","2,1","2,1","2,1","2,0","1,9","1,9","2,0","2,1","2,3","2,3","2,3","2,4","2,5","2,6","2,8","2,8","2,8","2,7","2,6","2,6","2,6","2,9","3,1","3,4","3,6","3,8","3,8","3,9","4,0","4,0","4,0","4,0","4,2","4,4","4,7","5,0","5,2","5,4","5,6","5,6","5,8","5,9","5,9","6,0","6,1","6,1","6,2","6,2","6,1","6,1","6,1","6,0","6,0","5,8","5,6","5,5","5,5","5,4","5,4","5,4","5,4","5,4","5,5","5,6","5,8","6,0","6,2","6,4","6,7","7,0","7,4","7,8","8,2","8,5","8,7","8,7","8,6","8,4","8,2","8,0","8,0","8,1","8,3","8,5","8,6","8,8","8,9","9,0","9,0","8,8","8,5","8,3","8,2","8,2","8,2","8,2","7,9","7,6","7,3","6,9","6,6","6,3","6,0","6,0","6,1","6,3","6,5","6,6","6,4","6,4","7,0","7,0","6,9","7,3","7,3","7,2","7,3","7,7","7,5","7,6","7,4","7,3","7,4","7,5","7,3","6,9","7,2","7,0","7,0","6,4","6,2","5,9","6,1","6,2","7,3","8,0","7,8","8,5","8,4","8,4","8,1","8,0","7,9","8,0","8,3","8,7","8,9","8,9","9,0","9,2","9,6","9,9","9,8","9,7","10,0","9,7","9,9","10,0","9,9","10,2","9,9","9,8","9,9","9,5","8,6","9,2","8,7","8,7","8,6","8,2","8,3","8,2","8,1","8,1","7,8","7,6","7,7","7,4","7,0","6,7","8,7","7,6","7,6","6,9","6,9","6,7","6,5","6,7","6,5" Hommes_plus_50,"1,8","2,0","2,1","2,2","2,2","2,2","2,2","2,2","2,3","2,5","2,5","2,6","2,7","2,7","2,8","2,9","2,9","3,0","3,0","3,0","3,0","3,0","3,1","3,2","3,4","3,5","3,6","3,7","3,8","3,8","3,9","3,9","3,9","4,0","4,0","4,0","4,1","4,3","4,4","4,5","4,6","4,8","5,1","5,3","5,3","5,4","5,3","5,3","5,4","5,4","5,4","5,4","5,4","5,2","5,1","5,0","5,0","4,8","4,6","4,5","4,4","4,3","4,3","4,4","4,4","4,5","4,8","5,0","5,3","5,5","5,5","5,4","5,3","5,4","5,6","5,8","5,9","5,8","5,8","5,7","5,8","5,8","5,8","5,8","6,1","6,3","6,3","6,3","6,4","6,4","6,4","6,5","6,5","6,6","6,7","6,7","6,7","6,6","6,4","6,1","5,8","5,5","5,1","4,7","4,4","4,3","4,4","4,5","4,6","4,8","4,9","4,9","4,9","4,7","5,2","5,1","5,0","5,5","4,9","4,7","4,6","4,6","4,9","5,4","5,3","5,2","5,0","5,2","5,2","4,6","4,7","4,2","4,3","4,9","4,4","4,3","4,8","5,1","5,5","5,8","5,7","5,5","5,5","5,4","5,2","5,5","5,8","5,8","6,1","5,9","6,1","6,8","6,9","7,0","7,0","6,6","6,9","6,9","6,6","7,5","7,0","7,9","7,6","7,4","7,2","7,2","7,4","7,4","6,9","6,8","7,1","6,8","6,8","6,5","6,3","6,1","6,6","6,3","6,4","6,0","5,5","4,7","5,9","5,7","6,0","6,1","6,0","5,9","5,5","5,2","5,0" Ensemble,"3,2","3,5","3,8","3,9","4,0","4,0","3,9","4,0","4,2","4,5","4,7","4,6","4,5","4,5","4,8","5,0","5,1","5,2","5,3","5,4","5,5","5,5","5,6","5,8","6,2","6,5","6,8","6,9","7,0","7,1","7,2","7,3","7,3","7,3","7,5","7,8","8,2","8,6","8,8","9,0","9,1","9,1","9,1","9,1","9,0","9,1","9,1","9,2","9,3","9,3","9,2","9,1","9,0","8,9","8,9","8,7","8,4","8,3","8,1","8,1","8,1","8,0","8,0","8,0","7,9","8,1","8,3","8,5","8,7","8,9","9,1","9,3","9,6","9,9","10,2","10,5","10,7","10,7","10,6","10,4","10,2","9,9","9,8","9,9","10,2","10,5","10,5","10,6","10,7","10,7","10,6","10,5","10,3","10,2","10,1","10,2","10,2","10,2","9,9","9,5","9,1","8,7","8,4","8,0","7,8","7,7","7,7","7,8","7,8","7,9","7,9","7,9","8,4","8,5","8,4","8,8","9,0","8,8","8,9","8,9","8,6","8,8","9,0","9,1","9,2","9,0","8,9","8,4","8,5","8,1","8,0","7,5","7,2","7,3","7,4","7,7","8,6","9,2","9,2","9,5","9,4","9,3","9,2","9,2","9,2","9,1","9,2","9,3","9,5","9,7","9,7","10,2","10,3","10,5","10,3","10,1","10,1","10,2","10,3","10,5","10,3","10,5","10,3","10,2","10,2","10,0","9,9","10,0","9,6","9,5","9,5","9,0","9,3","9,1","9,0","8,7","8,7","8,4","8,4","8,2","7,9","7,1","9,0","8,1","8,2","7,9","8,0","7,4","7,3","7,4","7,3" Ensemble_15-24,"7,0","7,6","8,2","8,6","9,1","9,1","8,9","8,9","9,7","10,6","11,0","10,6","10,2","10,4","11,2","11,9","12,1","12,3","12,5","12,9","13,5","13,6","13,8","14,4","15,3","16,1","16,7","17,0","17,0","17,4","17,8","17,9","17,8","18,0","18,5","19,6","21,0","22,1","22,6","23,0","23,0","22,3","22,0","21,5","21,1","21,1","20,9","20,5","20,2","20,0","19,7","19,6","19,4","19,0","18,5","17,7","17,0","16,7","16,4","16,7","16,9","16,8","16,7","16,9","17,0","17,4","17,7","17,8","18,3","18,5","19,3","20,1","20,8","21,7","22,5","23,0","23,6","24,0","23,7","23,2","22,6","21,7","21,0","21,6","22,1","22,9","23,4","23,8","24,0","23,8","23,4","22,9","22,1","21,9","22,1","22,5","23,0","22,8","21,7","20,4","19,0","18,0","17,4","16,9","16,8","16,7","17,0","17,3","17,5","17,6","17,8","18,3","19,1","20,3","19,8","21,1","21,6","21,5","22,0","21,8","21,5","21,5","23,2","22,9","24,1","23,7","23,5","22,8","22,5","21,2","19,9","19,9","18,8","19,7","20,4","21,8","24,1","25,2","25,5","25,3","24,6","24,9","25,5","23,8","24,8","24,2","23,5","24,0","24,2","25,0","26,0","27,9","27,3","26,9","26,1","25,3","25,3","25,5","25,6","26,2","26,3","26,1","26,1","26,0","26,2","26,0","26,4","25,2","23,9","24,7","23,0","22,4","23,0","22,1","22,3","20,7","21,1","20,5","19,9","21,6","20,6","22,4","22,9","20,2","21,0","19,5","19,2","16,1","16,6","18,0","18,3" Ensemble_25-49,"2,3","2,5","2,7","2,8","2,8","2,8","2,7","2,7","2,8","3,0","3,1","3,2","3,1","3,1","3,2","3,4","3,5","3,5","3,6","3,6","3,6","3,5","3,6","3,8","4,1","4,4","4,6","4,7","4,8","4,8","4,9","4,9","4,9","4,9","5,0","5,3","5,6","5,8","6,0","6,2","6,4","6,5","6,6","6,7","6,7","6,8","7,0","7,1","7,3","7,4","7,3","7,3","7,3","7,2","7,3","7,3","7,1","7,0","6,9","6,9","6,9","6,8","6,8","6,8","6,8","6,9","7,1","7,3","7,6","7,8","7,9","8,1","8,4","8,7","9,0","9,4","9,6","9,6","9,6","9,4","9,2","9,0","8,9","9,1","9,3","9,5","9,5","9,6","9,7","9,7","9,8","9,7","9,5","9,3","9,2","9,2","9,3","9,2","9,0","8,7","8,4","8,0","7,8","7,5","7,3","7,2","7,2","7,2","7,2","7,2","7,2","7,2","7,8","7,8","7,6","7,9","8,1","7,9","8,0","8,1","7,9","8,1","8,0","8,1","8,1","7,8","7,9","7,3","7,4","7,3","7,3","6,6","6,4","6,4","6,5","6,7","7,5","8,0","8,0","8,4","8,3","8,2","8,1","8,3","8,2","8,1","8,4","8,6","8,8","8,9","8,9","9,0","9,3","9,5","9,4","9,4","9,3","9,4","9,6","9,7","9,5","9,6","9,5","9,3","9,4","9,1","8,7","9,2","8,8","8,6","8,8","8,1","8,5","8,4","8,2","8,0","7,8","7,6","7,6","7,3","7,1","6,3","8,3","7,4","7,4","7,0","7,1","6,8","6,6","6,6","6,5" Ensemble_plus_50,"1,9","2,1","2,2","2,3","2,4","2,4","2,4","2,5","2,7","2,8","2,8","2,8","2,8","2,8","2,9","3,0","3,2","3,3","3,4","3,5","3,6","3,6","3,7","3,8","3,9","4,0","4,1","4,1","4,2","4,3","4,4","4,4","4,4","4,4","4,4","4,5","4,6","4,8","4,9","5,0","5,0","5,2","5,4","5,5","5,4","5,5","5,4","5,5","5,7","5,8","5,9","5,9","5,9","5,8","5,7","5,6","5,6","5,4","5,3","5,2","5,1","5,1","5,1","5,1","5,2","5,4","5,6","5,8","6,0","6,1","6,0","5,9","5,7","5,7","5,8","6,0","6,0","5,9","5,9","5,9","5,9","5,9","5,9","5,9","6,2","6,4","6,5","6,5","6,6","6,6","6,7","6,7","6,7","6,8","6,8","6,8","6,8","6,8","6,6","6,3","6,1","5,8","5,5","5,2","4,9","4,9","4,9","4,8","4,9","5,1","5,1","5,0","4,8","5,1","5,3","5,5","5,7","5,4","5,1","5,2","5,0","4,8","5,2","5,4","5,3","5,5","5,2","5,0","5,3","4,7","4,6","4,2","4,1","4,7","4,5","4,3","4,8","5,3","5,3","5,8","5,7","5,5","5,5","5,6","5,5","5,5","5,8","5,8","5,8","6,1","6,0","6,5","6,7","6,8","6,8","6,6","6,9","6,7","6,8","7,0","6,6","7,2","7,0","6,9","6,7","6,7","7,1","6,9","6,8","6,5","6,6","6,4","6,4","6,4","6,2","6,3","6,6","6,2","6,3","5,8","5,5","4,4","6,1","5,7","5,4","5,9","5,8","5,7","5,5","5,2","5,1" Longue_duree,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,"2,2","2,2","2,2","2,4","2,3","2,3","2,3","2,5","2,4","2,5","2,5","2,3","2,4","2,5","2,5","2,4","2,4","2,1","2,1","1,9","1,9","1,9","1,8","1,7","1,7","2,0","2,1","2,3","2,5","2,4","2,4","2,4","2,4","2,5","2,6","2,6","2,6","2,6","2,6","2,7","2,8","2,8","2,8","3,0","3,0","3,1","3,1","3,1","3,1","3,1","3,1","3,1","3,2","3,2","3,1","3,1","3,0","3,0","3,0","2,7","2,6","2,6","2,5","2,5","2,4","2,3","2,2","2,2","2,0","1,4","2,2","2,1","2,5","2,3","2,4","2,2","2,2","2,1","2,0" """.replace( "nd", "NaN" ).replace( "-T", "-Q" ) )
df = pd.read_csv(data, sep=",", quotechar='"').set_index("quarter").T
for c in df.columns:
    df[c] = df[c].astype(str).str.replace(",", ".").astype(float)
df["date"] = pd.PeriodIndex(df.index, freq="Q").to_timestamp()
return df.sort_values("date")

United States Macroeconomic data (1959q1 - 2009q3)

bulkhours.get_data("gmacro.us_gdp")

Show columns info
Column Info
year 1959q1 - 2009q3
quarter 1-4
realgdp Real gross domestic product (Bil. of chained 2005$, seasonally adjusted annual rate)
realcons Real personal consumption expenditures (Bil. of chained 2005$, seasonally adjusted annual rate)
realinv Real gross private domestic investment (Bil. of chained 2005$, seasonally adjusted annual rate)
realgovt Real federal consumption expenditures & gross investment(Bil. of chained 2005 US$, seasonally adjusted annual rate)
realdpi Real private disposable income (Bil. of chained 2005 US$, seasonally adjusted annual rate)
cpi End of the quarter consumer price index for all urban consumers: all items (1982-84 = 100, seasonally adjusted).
m1 End of the quarter M1 nominal money stock (Seasonally adjusted)
tbilrate Quarterly monthly average of the monthly 3-month treasury bill: secondary market rate
unemp Seasonally adjusted unemployment rate (%)
pop End of the quarter total population: all ages incl. armed forces over seas
infl Inflation rate (ln(cpi_{t}/cpi_{t-1}) * 400)
realint Real interest rate (tbilrate - infl)
Show code def get_us_gdp(self, simplify=True): import statsmodels.api as sm # Statistical models
us_okun = sm.datasets.macrodata.load_pandas().data
if not simplify:
    return us_okun

us_okun["diff(gdp)"] = 100 * us_okun["realgdp"].diff() / us_okun["realgdp"]
us_okun["diff(unemployement)"] = us_okun["unemp"].diff()
us_okun["yquarter"] = us_okun["year"].astype(str).str[:4] + "-Q" + us_okun["quarter"].astype(str).str[0]
us_okun = us_okun[["yquarter", "diff(gdp)", "diff(unemployement)"]]
us_okun = us_okun.dropna()
us_okun["quarter"] = pd.PeriodIndex(us_okun["yquarter"], freq="Q").to_timestamp()

return us_okun.set_index("quarter")

France Macroeconomic data

bulkhours.get_data("gmacro.fr_gdp")

Show columns info
Column Info
yquarter
diff(gdp)
diff(unemployement)
Show code def get_fr_gdp(self, simplify=True): gdp = get_fr_qgdp(self).reset_index() une = get_fr_unemployement(self).reset_index() fr_okun = gdp.merge(une, how="inner", left_on="quarter", right_on="index")
if not simplify:
    return fr_okun

if simplify:
    fr_okun = fr_okun.rename(columns={"gdp": "diff(gdp)", "quarter": "yquarter"})
    fr_okun["diff(unemployement)"] = fr_okun["Ensemble"].diff()
    fr_okun = fr_okun[["yquarter", "diff(gdp)", "diff(unemployement)"]]
    fr_okun = fr_okun.dropna()
    fr_okun["quarter"] = pd.PeriodIndex(fr_okun["yquarter"], freq="Q").to_timestamp()

return fr_okun.set_index("quarter")

World happiness report data (2015-2020)

bulkhours.get_data("world.happiness")

Show columns info
Column Info
country
Ladder score
Logged GDP per capita
Social support
Healthy life expectancy
Freedom to make life choices
Generosity
Perceptions of corruption
Show code def get_happiness(self, **data_info): df = self.read_raw_data(self.raw_data)
return df.sort_values("Ladder score", ascending=False)[
    [
        "Country name",
        "Ladder score",
        "Logged GDP per capita",
        "Social support",
        "Healthy life expectancy",
        "Freedom to make life choices",
        "Generosity",
        "Perceptions of corruption",
    ]
].rename(columns={"Country name": "country"})

World Bank Poverty and Inequality data (with gpx extra info)

bulkhours.get_data("world.maphappiness")

Show columns info
Column Info
pop_est
continent
name
iso_a3
gdp_md_est
geometry
Ladder score
Logged GDP per capita
Social support
Healthy life expectancy
Freedom to make life choices
Generosity
Perceptions of corruption
Show code def get_mappoverty(self, **kwargs): return get_mapgeneric(get_happiness(self, **kwargs))

Market prices of SP500 stocks

bulkhours.get_data("prices-split-adjusted")

Show columns info
Column Info
date
symbol
open
close
low
high
volume

Market fundamentals of SP500 stocks

bulkhours.get_data("fundamentals")

Show columns info
Column Info
Unnamed: 0
Ticker Symbol
Period Ending
Accounts Payable
Accounts Receivable
Add'l income/expense items
After Tax ROE
Capital Expenditures
Capital Surplus
Cash Ratio
Cash and Cash Equivalents
Changes in Inventories
Common Stocks
Cost of Revenue
Current Ratio
Deferred Asset Charges
Deferred Liability Charges
Depreciation
Earnings Before Interest and Tax
Earnings Before Tax
Effect of Exchange Rate
Equity Earnings/Loss Unconsolidated Subsidiary
Fixed Assets
Goodwill
Gross Margin
Gross Profit
Income Tax
Intangible Assets
Interest Expense
Inventory
Investments
Liabilities
Long-Term Debt
Long-Term Investments
Minority Interest
Misc. Stocks
Net Borrowings
Net Cash Flow
Net Cash Flow-Operating
Net Cash Flows-Financing
Net Cash Flows-Investing
Net Income
Net Income Adjustments
Net Income Applicable to Common Shareholders
Net Income-Cont. Operations
Net Receivables
Non-Recurring Items
Operating Income
Operating Margin
Other Assets
Other Current Assets
Other Current Liabilities
Other Equity
Other Financing Activities
Other Investing Activities
Other Liabilities
Other Operating Activities
Other Operating Items
Pre-Tax Margin
Pre-Tax ROE
Profit Margin
Quick Ratio
Research and Development
Retained Earnings
Sale and Purchase of Stock
Sales, General and Admin.
Short-Term Debt / Current Portion of Long-Term Debt
Short-Term Investments
Total Assets
Total Current Assets
Total Current Liabilities
Total Equity
Total Liabilities
Total Liabilities & Equity
Total Revenue
Treasury Stock
For Year
Earnings Per Share
Estimated Shares Outstanding

Stocks information for SP500

bulkhours.get_data("securities")

Show columns info
Column Info
Ticker symbol
Security
SEC filings
GICS Sector
GICS Sub Industry
Address of Headquarters
Date first added
CIK

Standardized country information (iso m49)

bulkhours.get_data("continent")

Show columns info
Column Info
index
country
iso
m49
region1
region2
continent

Corruption index per country

bulkhours.get_data("corruption")

Show columns info
Column Info
country
annual_income
corruption_index

Cost of living

bulkhours.get_data("cost_of_living")

Show columns info
Column Info
country
cost_index
monthly_income
purchasing_power_index

GDP per capita per country

bulkhours.get_data("richest_countries")

Show columns info
Column Info
country
gdp_per_capita

Tourism information per country

bulkhours.get_data("tourism")

Show columns info
Column Info
country
tourists_in_millions
receipts_in_billions
receipts_per_tourist
percentage_of_gdp

Unemployemnt rates per country

bulkhours.get_data("unemployment")

Show columns info
Column Info
country
unemployment_rate

Simple synthetic data for exercice

bulkhours.get_data("wages")

Show columns info
Column Info
wage
experience
studies

COR data

bulkhours.get_data("COR_1")

COR data

bulkhours.get_data("COR_2")

COR data

bulkhours.get_data("COR_2bis")

COR data

bulkhours.get_data("COR_3")

COR data

bulkhours.get_data("COR_4")

COR data

bulkhours.get_data("COR_5")

Statement of Apple stock (Quarterly)

bulkhours.get_data("trading.apple")

Show columns info
Column Info
revenue
grossProfit
ebitda
netIncome
eps
Show code def get_apple(self): apple = self.read_raw_data(self.raw_data).iloc[-4 * 5 :]
apple.index = pd.to_datetime(apple.index)
apple = apple[["date", "revenue", "grossProfit", "ebitda", "netIncome", "eps"]].set_index("date")
apple["revenue"] = apple["revenue"].astype(float)
apple.index = pd.date_range("2017-12-30", periods=20, freq="Q")

return apple

Cotisants, retraités et rapport démographique tous régimes en 2020

bulkhours.get_data("france.retraites")

Show columns info
Column Info
active
retired
rapport
Show code def get_retraites(self): return ( pd.read_csv( StringIO( """ year active retired rapport 2020 28,2 16,9 1,67 2019 28,5 16,7 1,71 2018 28,2 16,5 1,71 2017 27,9 16,3 1,72 2016 27,6 16,1 1,71 2015 27,4 16,0 1,71 2014 27,3 15,8 1,73 2013 27,2 15,6 1,74 2012 27,1 15,3 1,77 2011 27,0 15,3 1,77 2010 26,8 15,1 1,78 2009 26,8 14,7 1,82 """.replace( ",", "." ) ), sep="\t", ) .set_index("year") .astype(float) .sort_index() )

Distribution des salaires mensuels nets en équivalent temps plein (EQTP) en 2020

bulkhours.get_data("france.income")

Show columns info
Column Info
index
income
population
xmin
xmax
is_valid
Show code def get_income(self): data = StringIO( """income population Moins de 1_200 583943 De 1_200 à 1_300 613_321 De 1_300 à 1_400 835_135 De 1_400 à 1_500 969_172 De 1_500 à 1_600 1_052_630 De 1_600 à 1_700 1_008_034 De 1_700 à 1_800 939_538 De 1_800 à 1_900 863_042 De 1_900 à 2_000 782_314 De 2_000 à 2_100 706_339 De 2_100 à 2_200 630_132 De 2_200 à 2_300 563_387 De 2_300 à 2_400 504_240 De 2_400 à 2_500 452_167 De 2_500 à 2_600 407_908 De 2_600 à 2_700 365_648 De 2_700 à 2_800 329_810 De 2_800 à 2_900 294_230 De 2_900 à 3_000 265_925 De 3_000 à 3_100 241_899 De 3_100 à 3_200 218_832 De 3_200 à 3_300 198_266 De 3_300 à 3_400 180_386 De 3_400 à 3_500 164_164 De 3_500 à 3_600 150_218 De 3_600 à 3_700 136_878 De 3_700 à 3_800 124_602 De 3_800 à 3_900 114_322 De 3_900 à 4_000 106_638 De 4_000 à 4_100 97_332 De 4_100 à 4_200 89_173 De 4_200 à 4_300 82_839 De 4_300 à 4_400 76_130 De 4_400 à 4_500 69_887 De 4_500 à 4_600 64_863 De 4_600 à 4_700 60_466 De 4_700 à 4_800 55_998 De 4_800 à 4_900 52_101 De 4_900 à 5_000 48_438 De 5_000 à 5_100 44_831 De 5_100 à 5_200 41_854 De 5_200 à 5_300 38_848 De 5_300 à 5_400 36_480 De 5_400 à 5_500 34_092 De 5_500 à 5_600 31_841 De 5_600 à 5_700 29_948 De 5_700 à 5_800 27_840 De 5_800 à 5_900 26_335 De 5_900 à 6_000 25_270 De 6_000 à 6_100 23_380 De 6_100 à 6_200 21_912 De 6_200 à 6_300 20_313 De 6_300 à 6_400 19_320 De 6_400 à 6_500 18_286 De 6_500 à 6_600 17_333 De 6_600 à 6_700 16_394 De 6_700 à 6_800 15_519 De 6_800 à 6_900 14_700 De 6_900 à 7_000 13_549 De 7_000 à 7_100 13_210 De 7_100 à 7_200 12_278 De 7_200 à 7_300 11_829 De 7_300 à 7_400 11_186 De 7_400 à 7_500 10_567 De 7_500 à 7_600 10_063 De 7_600 à 7_700 9_698 De 7_700 à 7_800 9_178 De 7_800 à 7_900 8_974 De 7_900 à 8_000 8_689 De 8_000 à 8_100 8_170 De 8_100 à 8_200 7_697 De 8_200 à 8_300 7_431 De 8_300 à 8_400 7_057 De 8_400 à 8_500 6_674 De 8_500 à 8_600 6_410 De 8_600 à 8_700 6_138 De 8_700 à 8_800 5_772 De 8_800 à 8_900 5_585 De 8_900 à 9_000 5_408 Plus de 9_000 183_314 """ )
df = pd.read_csv(data, sep="\t").reset_index()

df["population"] = df["population"].str.replace(" ", "").astype(float)
df["xvalue"] = (
    df["income"]
    .str.replace("De ", "")
    .str.replace("Moins de", "1_100 à")
    .str.replace("Plus de 9_000", "9_000 à 9_100")
)
df["xvalue"] = df["xvalue"].str.replace(" ", "").str.split("à")
df["xmin"] = df["xvalue"].apply(lambda x: float(x[0]))
df["xmax"] = df["xvalue"].apply(lambda x: float(x[1]))
df["xvalue"] = 0.5 * (df["xmin"] + df["xmax"])
df["is_valid"] = ~df.index.isin([0, len(df) - 1])

return df.set_index("xvalue")

Revenu salarial et salaire en EQTP annuels moyens selon le sexe en 2019

bulkhours.get_data("france.salaires")

Show columns info
Column Info
Revenu annuel Femmes moyen Revenu annuel Femmes moyen
Revenu annuel Hommes moyen Revenu annuel Hommes moyen
Revenu annuel Femmes moyen Écart relatif (en %) Revenu annuel Femmes moyen Écart relatif (en %)
Salaire annuel Femmes moyen EQTP Salaire annuel Femmes moyen EQTP
Salaire annuel Hommes moyen EQTP Salaire annuel Hommes moyen EQTP
Salaire annuel Femmes moyen EQTP Écart relatif (en % EQTP) Salaire annuel Femmes moyen EQTP Écart relatif (en % EQTP)
Show code def get_salaires(self): data = StringIO( """ categorie revenu_femme revenu_homme revenu_diff salaire_ajusté_femme salaire_ajusté_homme salaire_ajusté_diff Age: Moins de 25 ans 7 360 9 110 19,2 17 930 19 210 6,7 Age: 25-39 ans 18 220 22 610 19,4 24 460 27 660 11,6 Age: 40-49 ans 22 830 29 710 23,1 28 190 34 270 17,7 Age: 50-54 ans 23 070 31 340 26,4 28 280 35 740 20,9 Age: 55 ans ou plus 21 410 29 430 27,2 29 520 38 740 23,8 Diplôme: Pas de diplôme 12 450 17 400 28,5 19 590 23 260 15,8 Diplôme: inférieur au baccalauréat 15 180 20 510 26,0 21 460 25 650 16,3 Diplôme: Baccalauréat à bac+2 20 480 26 560 22,9 25 570 31 000 17,5 Diplôme: Bac+3 ou plus 30 790 44 410 30,7 36 190 50 140 27,8 SocioPro: Cadres 36 040 45 370 20,6 42 820 52 950 19,1 SocioPro: Professions intermédiaires 21 770 26 040 16,4 27 230 30 690 11,3 SocioPro: Employés 13 900 15 310 9,2 20 860 22 850 8,7 SocioPro: Ouvriers 11 960 17 200 30,5 19 580 22 930 14,6 Secteur: privé et entreprises publiques 18 010 24 260 25,7 26 330 31 580 16,6 Secteur: Fonction publique 21 330 25 290 15,7 26 640 31 090 14,3 Secteur: Ensemble 18 970 24 420 22,3 26 430 31 510 16,1 """ ) df = pd.read_csv(data, sep="\t").set_index("categorie") for c in df.columns: df[c] = df[c].str.replace(" ", "").str.replace(",", ".").astype(float)
return df

Inégalités salariales entre femmes et hommes de 1995 à 2019

bulkhours.get_data("france.histsalaires")

Show columns info
Column Info
delta_rev_legacy écart relatif du revenu salarial moyen homme/femme
delta_rev écart relatif (en %) du revenu salarial moyen.1
delta_rev_eqtp_legacy écart relatif du salaire moyen en EQTP
delta_rev_eqtp écart relatif du salaire moyen en EQTP
delta_vol_eqtp écart relatif du volume de travail en EQTP moyen
Show code def get_histsalaires(self): data = StringIO( """ Année écart relatif du revenu salarial moyen écart relatif du revenu salarial moyen écart relatif du salaire moyen en EQTP écart relatif du salaire moyen en EQTP écart relatif du volume de travail en EQTP moyen 1995 27,4 18,5 10,9 1996 27,8 18,8 11,1 1997 27,6 18,5 11,2 1998 27,8 18,3 11,4 1999 27,9 17,9 11,9 2000 28,2 18,6 11,6 2001 28,2 18,8 11,3 2002 27,8 18,5 11,3 2003 27,6 18,5 11,1 2004 27,3 18,4 10,9 2005 27,1 18,3 10,8 2006 26,9 18,2 10,6 2007 26,8 18,5 10,2 2008 27,1 18,7 10,3 2009 26,1 18,3 9,6 2010 25,5 18,2 9,0 2011 25,6 18,2 9,2 2012 25,3 25,5 18,2 18,5 8,8 2013 24,8 18,2 8,2 2014 24,1 17,9 7,8 2015 23,7 17,8 7,2 2016 23,3 17,0 7,7 2017 22,9 16,7 7,7 2018 22,8 16,6 7,6 2019 22,3 16,1 7,6 """ ) df = pd.read_csv(data, sep="\t").set_index("Année") for c in df.columns: df[c] = df[c].str.replace(" ", "").str.replace(",", ".").astype(float)
return df

Age de la population au 1er janvier (fin novembre 2022)

bulkhours.get_data("pyramide")

Show columns info
Column Info
Année de naissance
Age révolu
Nombre de femmes
Nombre d'hommes
Ensemble

Descriptive statistics of hourly wages in selected EU countries in 2010 (in PPS)

bulkhours.get_data("mincer.stats")

Show columns info
Column Info
Mean
Minimum
Maximum
Variance
Coefficient
of
variation
Show code def get_stats(self): return pd.read_csv( StringIO( """Country Mean Minimum Maximum Variance Coefficient of variation Austria 16.196 7.330 46.400 64.591 0.4962 Belgium 18.741 10.010 42.140 58.243 0.4072 Bulgaria 5.349 2.340 13.050 7.771 0.5212 Czech Republic 8.060 3.700 20.060 14.024 0.4646 Denmark 19.528 11.750 35.650 29.825 0.2797 Estonia 7.552 3.160 17.840 11.965 0.4580 Finland 16.068 8.990 35.360 38.538 0.3863 France 15.106 8.080 40.320 43.449 0.4364 Germany 17.764 7.520 40.000 67.286 0.4618 Hungary 8.055 3.760 19.730 15.993 0.4965 Ireland 19.313 10.180 40.300 58.440 0.3958 Italy 16.040 7.690 42.550 80.968 0.5610 Latvia 6.238 3.160 13.160 5.978 0.3920 Netherlands 16.471 7.230 32.420 34.222 0.3552 Poland 8.821 4.080 22.620 20.516 0.5135 Portugal 11.422 4.150 31.150 54.673 0.6474 Romania 5.903 2.450 15.250 12.481 0.5985 Slovakia 7.703 3.790 18.970 13.479 0.4766 Slovenia 12.708 5.760 33.910 48.510 0.5481 Spain 14.489 7.390 35.940 44.362 0.4597 Sweden 14.651 9.550 28.050 18.079 0.2902 United Kingdom 16.368 7.590 36.390 53.933 0.4487 """ ), sep=" ", ).set_index("Country")

Mincer equation parameters per country

bulkhours.get_data("mincer.params")

Show columns info
Column Info
alpha_0i
alpha_1i
alpha_2i
alpha_3i
alpha_0i_e
alpha_1i_e
alpha_2i_e
alpha_3i_e
Show code def get_params(self): return pd.read_csv( StringIO( """Country alpha_0i alpha_1i alpha_2i alpha_3i alpha_0i_e alpha_1i_e alpha_2i_e alpha_3i_e Austria 0.804517 0.331677 0.426552 -0.03883 0.218682 0.021472 0.113136 0.01396 Belgium 1.297771 0.285186 0.335843 -0.02938 0.142724 0.014014 0.073839 0.009111 Bulgaria 0.322091 0.416255 0.113577 -0.01772 0.228792 0.022465 0.118367 0.014605 Czech_Republic 0.520228 0.346856 0.289626 -0.03328 0.229066 0.022491 0.118508 0.014622 Denmark 1.545782 0.174215 0.437635 -0.04545 0.140934 0.013838 0.072913 0.008997 Estonia 0.737041 0.352713 0.205628 -0.03139 0.238293 0.023397 0.123282 0.015211 Finland 1.352042 0.258832 0.319167 -0.03292 0.177835 0.017461 0.092004 0.011352 France 1.259472 0.292803 0.224716 -0.01589 0.159000 0.015612 0.08226 0.01015 Germany 0.694024 0.339402 0.54815 -0.05546 0.180304 0.017704 0.093281 0.01151 Hungary 0.770683 0.375923 0.068702 -0.0028 0.204335 0.020063 0.105714 0.013044 Ireland 0.992552 0.26368 0.571297 -0.05996 0.171045 0.016794 0.088491 0.010919 Italy 0.652806 0.340295 0.448101 -0.03797 0.227626 0.02235 0.117763 0.014531 Latvia 0.856984 0.320107 0.07136 -0.01262 0.182072 0.017877 0.094196 0.011623 Netherlands 0.851423 0.248588 0.571987 -0.05838 0.136289 0.013382 0.07051 0.0087 Poland 0.395191 0.383528 0.325102 -0.0356 0.227625 0.02235 0.117763 0.01453 Portugal -0.04775 0.46068 0.463982 -0.04216 0.262584 0.025783 0.135849 0.016762 Romania 0.128356 0.453002 0.158483 -0.01838 0.269076 0.02642 0.139208 0.017177 Slovakia 0.628832 0.341852 0.223241 -0.02638 0.238073 0.023376 0.123168 0.015197 Slovenia 0.764813 0.385382 0.233162 -0.01591 0.190327 0.018688 0.098467 0.01215 Spain 1.181748 0.317969 0.161371 -0.0043 0.187973 0.018457 0.097249 0.011999 Sweden 1.471135 0.19044 0.324012 -0.03441 0.14431 0.014169 0.07466 0.009212 United_Kingdom 0.750457 0.34039 0.540786 -0.06146 0.186361 0.018298 0.096415 0.011896""" ), sep=" ", ).set_index("Country")

Scipy list of available distributions

bulkhours.get_data("scipy_distributions_list")

Show code def get_scipy_distributions_list(self): import scipy as sp
return [d for d in dir(sp.stats._continuous_distns) if not d in ["levy_stable", "studentized_range"]]

Oil production in Saudi Arabia from 1996 to 2007

bulkhours.get_data("statsdata.oil")

Show columns info
Column Info
oil
Show code def get_oil(self): return pd.Series( [ 446.6565, 454.4733, 455.663, 423.6322, 456.2713, 440.5881, 425.3325, 485.1494, 506.0482, 526.792, 514.2689, 494.211, ], pd.date_range(start="1996", end="2008", freq="A"), ).to_frame("oil")

Air pollution data

bulkhours.get_data("statsdata.air")

Show columns info
Column Info
air
Show code def get_air(self): air = pd.Series( [ 17.5534, 21.86, 23.8866, 26.9293, 26.8885, 28.8314, 30.0751, 30.9535, 30.1857, 31.5797, 32.5776, 33.4774, 39.0216, 41.3864, 41.5966, ], pd.date_range(start="1990", end="2005", freq="A"), ) return air.to_frame("air")

Forecasting livestock, sheep in Asia: comparing forecasting performance of non-seasonal methods.

bulkhours.get_data("statsdata.livestock2")

Show columns info
Column Info
livestock2
Show code def get_livestock2(self): index = pd.date_range(start="1970", end="2001", freq="A") return pd.Series( [ 263.9177, 268.3072, 260.6626, 266.6394, 277.5158, 283.834, 290.309, 292.4742, 300.8307, 309.2867, 318.3311, 329.3724, 338.884, 339.2441, 328.6006, 314.2554, 314.4597, 321.4138, 329.7893, 346.3852, 352.2979, 348.3705, 417.5629, 417.1236, 417.7495, 412.2339, 411.9468, 394.6971, 401.4993, 408.2705, 414.2428, ], index, ).to_frame("livestock2")

Forecasting livestock, sheep in Asia: comparing forecasting performance of non-seasonal methods. (3)

bulkhours.get_data("statsdata.livestock3")

Show columns info
Column Info
livestock3
Show code def get_livestock3(self): data = [407.9979, 403.4608, 413.8249, 428.105, 445.3387, 452.9942, 455.7402] return pd.Series(data, pd.date_range(start="2001", end="2008", freq="A")).to_frame("livestock3")

International visitor night in Australia (millions) < 2005

bulkhours.get_data("statsdata.aust")

Show columns info
Column Info
aust
Show code def get_aust(self): data = [ 41.7275, 24.0418, 32.3281, 37.3287, 46.2132, 29.3463, 36.4829, 42.9777, 48.9015, 31.1802, 37.7179, 40.4202, 51.2069, 31.8872, 40.9783, 43.7725, 55.5586, 33.8509, 42.0764, 45.6423, 59.7668, 35.1919, 44.3197, 47.9137, ] return pd.Series(data, pd.date_range(start="2005", end="2010-Q4", freq="QS-OCT")).to_frame("aust")

International visitor night in Australia (millions) > 2005

bulkhours.get_data("air_passengers")

Show columns info
Column Info
#Passengers
is_test
Show code def get_air_passengers(self): df = self.read_raw_data(self.raw_data).set_index("Month")
df.index = pd.to_datetime(df.index)
df.index.freq = "MS"
df["is_test"] = df.index >= df.index[120]

return df

All-Transactions House Price Index for Houston

bulkhours.get_data("statsdata.hhousing")

Show code def get_hhousing(self): from pandas_datareader import data as pdr # To get data
data = pdr.get_data_fred("HOUSTNSA", "1959-01-01")  # , "2019-06-01")
housing = data.HOUSTNSA.pct_change().dropna()
# Scale by 100 to get percentages
housing = 100 * housing.asfreq("MS")
return housing.to_frame()

Predictive_Maintenance

Synthetic data for machine failure data (1)

bulkhours.get_data("maintenance1")

Show columns info
Column Info
ID
DATE
MANUFACTURER
S15
EQUIPMENT_FAILURE

Synthetic data for machine failure data (2)

bulkhours.get_data("maintenance2")

Show columns info
Column Info
ID
DATE
MANUFACTURER
S15
EQUIPMENT_FAILURE

Synthetic data for machine failure data (3)

bulkhours.get_data("maintenance3")

Show columns info
Column Info
ID
DATE
REGION_CLUSTER
MAINTENANCE_VENDOR
MANUFACTURER
WELL_GROUP
S15
S17
S13
S5
S16
S19
S18
EQUIPMENT_FAILURE
S8
AGE_OF_EQUIPMENT

Synthetic data for machine failure data (4)

bulkhours.get_data("maintenance4")

Show columns info
Column Info
ID
DATE
REGION_CLUSTER
MAINTENANCE_VENDOR
MANUFACTURER
WELL_GROUP
S15
S17
S13
S5
S16
S19
S18
EQUIPMENT_FAILURE
S8
AGE_OF_EQUIPMENT

Computing

transistor_count

bulkhours.get_data("hpc.transistor_count")

Show columns info
Column Info
processor
count
date
designer
manufacturer
engraving_scale
area
density
ref
Show code def get_dfistor_count(self): columns = ["processor", "count", "date", "designer", "manufacturer", "engraving_scale", "area", "density", "ref"] df = flops.get_table_from_wiki(wpage="Transistor_count", in_table="Voodoo Graphics", columns=columns) return df.iloc[:-1]

Semiconductor device fabrication: MOSFET scaling

bulkhours.get_data("hpc.engraving_scale")

Show columns info
Column Info
year
scale
Show code def get_engraving_scale(self): return flops.get_engraving_scale(verbose=True)

FLOPS sub-units

bulkhours.get_data("hpc.FLOPS_units")

Show columns info
Column Info
Name
Unit
Value
Show code def get_FLOPS(self): return flops.get_table_from_wiki("FLOPS", "Computer performance")

FLOPS for gpus

bulkhours.get_data("hpc.FLOPS_gpus")

Show columns info
Column Info
date
un_costs
costs
platform
comments
Show code def get_gpus(self): return flops.get_table_from_wiki("FLOPS", "NVIDIA", columns=["date", "un_costs", "costs", "platform", "comments"])

FLOPS for cpus

bulkhours.get_data("hpc.FLOPS_cpus")

Show code def get_cpus(self): columns = ["processor", "count", "date", "designer", "engraving_scale", "area", "density"] df = flops.get_table_from_wiki( wpage="Transistor_count", in_table="20-bit, 6-chip, 28 chips total", columns=columns ) df = df.iloc[:-1] df["date"] = df["date"].str.replace("March ", "").str.replace("November ", "") df["date"] = df["date"].str.replace("March ", "").str.replace("November ", "") df["date"] = df["date"].str.split("[").str[0].astype(int)
df["count"] = df["count"].str.replace(",", "")
df["count"] = df["count"].str.split("[").str[0]
df["count"] = df["count"].str.split("+").str[0]
df["count"] = df["count"].str.split(" ").str[0]
df["count"] = pd.to_numeric(df["count"], errors="coerce")

df["engraving_scale"] = df["engraving_scale"].str.split("[").str[0]
df["engraving_scale"] = df["engraving_scale"].str.replace(",", "")
df["engraving_scale"] = df["engraving_scale"].str.split("(").str[0]
df["engraving_scale"] = df["engraving_scale"].str.replace("\xa0nm", "")
df["engraving_scale"] = df["engraving_scale"].str.replace("nm", "")
df["engraving_scale"] = pd.to_numeric(df["engraving_scale"], errors="coerce")

l = [3, 4, 6, 8, 15, 23, 50, 80, 150, 300, 500, 800, 1000, 3000, 5000, 10000]
df["engraving_scale2"] = pd.cut(df["engraving_scale"], bins=l, include_lowest=True)
df["engraving_scale3"] = df["engraving_scale2"].map(
    dict(zip(df["engraving_scale2"].unique(), range(len(df["engraving_scale2"].unique()))))
)
df["engraving_scale3"] = df["engraving_scale3"].fillna(1).astype(float)

return df

Costs of FLOPS

bulkhours.get_data("hpc.FLOPS_costs")

Show columns info
Column Info
('Date', 'Date')
('Approximate USD per GFLOPS', 'Unadjusted')
('Approximate USD per GFLOPS', '2022[69]')
('Platform providing the lowest cost per GFLOPS', 'Platform providing the lowest cost per GFLOPS')
('Comments', 'Comments')
Show code def get_costs(self): return flops.get_table_from_wiki("FLOPS", "Approximate USD per GFLOPS")#, columns=["date", "un_costs", "costs", "platform", "comments"])

Energy Efficiency (GFlops/watts)

bulkhours.get_data("hpc.green500")

Show columns info
Column Info
Rank
TOP500 Rank
Name
Computer
Site
Manufacturer
Country
Year
Segment
Total Cores
Accelerator/Co-Processor Cores
Rmax [TFlop/s]
Rpeak [TFlop/s]
Power (kW)
Power Source
Energy Efficiency [GFlops/Watts]
Power Source.1
Power Quality Level
Optimized Run (HPL)
Optimized Run (Peak Power)
Memory
Architecture
Processor
Processor Technology
Processor Speed (MHz)
Operating System
OS Family
Accelerator/Co-Processor
Cores per Socket
Processor Generation
System Model
System Family
Interconnect Family
Interconnect
Continent
Site ID
System ID

Energy Efficiency (GFlops/watts)

bulkhours.get_data("hpc.top500")

Show columns info
Column Info
Rank
Previous Rank
First Appearance
First Rank
Name
Computer
Site
Manufacturer
Country
Year
Segment
Total Cores
Accelerator/Co-Processor Cores
Rmax [TFlop/s]
Rpeak [TFlop/s]
Nmax
Nhalf
HPCG [TFlop/s]
Power (kW)
Power Source
Energy Efficiency [GFlops/Watts]
Memory
Architecture
Processor
Processor Technology
Processor Speed (MHz)
Operating System
OS Family
Accelerator/Co-Processor
Cores per Socket
Processor Generation
System Model
System Family
Interconnect Family
Interconnect
Continent
Site ID
System ID

Computational capacity of the fastest supercomputers

bulkhours.get_data("supercomputers")

Show columns info > The number of floating-point operations per second (GigaFLOPS) by the fastest supercomputer in any given year
Column Info
Entity The number of GigaFLOP/S by the fastest supercomputer in any given year

Physics

  • Celsius en Kelvin: $273.15°K=0°C$
from bulkhours import constants as bkc
bkc.c2k := 273.15  # K.C-1
bkc.kelvin := 273.15  # K.C-1
  • Celerité de la lumière: $c = 3 \cdot 10^{5}m\cdot s^{-1}$
from bulkhours import constants as bkc
bkc.c := 3e+05  # m.s-1
bkc.vitesse_lumiere := 3e+05  # m.s-1
  • Distance parcourue par la lumière en 1an: $al = 9.461 \cdot 10^{15}m$
from bulkhours import constants as bkc
bkc.al := 9.461e+15  # m
bkc.annee_lumiere := 9.461e+15  # m
  • Une Unité astrononique faisant un angle d'une seconde d'arc (ancienne déf.): $1pc \equiv \frac{180\cdot60\cdot60}{\pi} = 3.086 \cdot 10^{16}m = 3.26al$
from bulkhours import constants as bkc
bkc.parsec := 3.086e+16  # m.pc-1
  • Une Unité astrononique faisant un angle d'une seconde d'arc (ancienne déf.): $1kpc \equiv \frac{1000\cdot180\cdot60\cdot60}{\pi}$
from bulkhours import constants as bkc
bkc.kparsec := 3.086e+19  # m.kpc-1
  • Constante de la gravitation: $G = 6.67 \cdot 10^{-11}N\cdot m^2\cdot kg^{-2}$ [6.6743e-11N.m2.kg-2]
from bulkhours import constants as bkc
bkc.G := 6.67e-11  # N.m2.kg-2
  • Acceleration standard de la gravitation: $g = 9.8m\cdot s^{-2}$ [9.80665m.s-2]
from bulkhours import constants as bkc
bkc.g := 9.8  # m.s-2
  • Constante de Planck: $h = 6.626 \cdot 10^{-34}J\cdot s$ [6.62607015e-34J.s]
from bulkhours import constants as bkc
bkc.h := 6.626e-34  # J.s
  • Constante de Planck réduite: $\bar{h} = \frac{h}{2\pi}$
from bulkhours import constants as bkc
bkc.hbar := 1.055e-34  # J.s
  • Nombre d'Avogadro: $N_\mathcal{A} = 6.02 \cdot 10^{23}mol-1$ (Carbone: $12g\Leftrightarrow 1mol$)
from bulkhours import constants as bkc
bkc.N_A := 6.02e+23  # mol-1
bkc.A := 6.02e+23  # mol-1
  • Constante de Stefan-Boltzmann: $\sigma = 5.67 \cdot 10^{-8} W\cdot m^{-2}\cdot K^{-4}$
from bulkhours import constants as bkc
bkc.sigma := 5.67e-08  # W.m-2.K-4
bkc.stefan := 5.67e-08  # W.m-2.K-4
  • Constante de Wien: $\lambda_{\text{max}} \cdot T = 0.003m\cdot K$ [0.002897771955m.K]
from bulkhours import constants as bkc
bkc.Wien := 0.003  # m.K
bkc.wien := 0.003  # m.K
bkc.lambda_max := 0.003  # m.K
  • Constante de Rydberg: $R_H({\text{Hydrogene}}) = 1.1 \cdot 10^{7}m-1$
from bulkhours import constants as bkc
bkc.Rydberg := 1.1e+07  # m-1
bkc.rydberg := 1.1e+07  # m-1
bkc.R_H := 1.1e+07  # m-1
  • Energie cinetique e sous 1Volt: $\mathrm{eV} = 1.6 \cdot 10^{-19}J\cdot eV^{-1}$ [1.602176634e-19J.eV-1]
from bulkhours import constants as bkc
bkc.eV := 1.6e-19  # J.eV-1
bkc.ev := 1.6e-19  # J.eV-1
  • Masse electron: $m_e = 9.109 \cdot 10^{-31}kg$ [9.1093837015e-31kg]
from bulkhours import constants as bkc
bkc.m_e := 9.109e-31  # kg
  • Rayon de Bohr: $a = 5.3 \cdot 10^{-11} m$
from bulkhours import constants as bkc
bkc.r_bohr := 5.300e-11  # m
bkc.a := 5.300e-11  # m
  • Masse proton: $m_p = 1.673 \cdot 10^{-27}kg$ [1.67262192369e-27kg]
from bulkhours import constants as bkc
bkc.m_p := 1.673e-27  # kg
  • Masse proton: $m_p = 1.007276uma$ ($1uma \equiv \frac{M(^{12}C)}{12}$) [1.007276466621uma]
from bulkhours import constants as bkc
bkc.m_puma := 1.007276  # uma
  • Masse neutron: $m_n = 1.008663uma$ ($1uma \equiv \frac{M(^{12}C)}{12}$) [1.00866491595uma]
from bulkhours import constants as bkc
bkc.m_numa := 1.008663  # uma
  • Unité de Masse Atomique: $m_{nuc} = 1.660 \cdot 10^{-27}kg\cdot uma^{-1}$ ($1uma \equiv \frac{M(^{12}C)}{12}$) [1.6605390666e-27kg.uma-1]
from bulkhours import constants as bkc
bkc.uma := 1.660e-27  # kg.uma-1
  • Unité de Masse Atomique (MeV): $m_{nuc} = 931.500MeV\cdot uma^{-1}$ ($1uma \equiv \frac{M(^{12}C)}{12}$)
from bulkhours import constants as bkc
bkc.uma_mev := 931.500  # MeV.uma-1
  • Masse: $M_{\mathrm{mercure}} = 3.301 \cdot 10^{23}kg$
from bulkhours import constants as bkc
bkc.M_mercure := 3.301e+23  # kg
  • Distance au soleil: $d_{\odot \mathrm{mercure}} = 0.38ua$
from bulkhours import constants as bkc
bkc.d_mercure := 0.38  # ua
  • Rayon: $R_{\mathrm{mercure}} = 2439km$
from bulkhours import constants as bkc
bkc.R_mercure := 2439  # km
  • Albedo: $A_{\mathrm{mercure}} = 0.09$
from bulkhours import constants as bkc
bkc.A_mercure := 0.09  # Sans unité (entre 0 et 1)
  • Effet de serre: $S_{\mathrm{mercure}} = 0$
from bulkhours import constants as bkc
bkc.S_mercure := 0  # Sans unité (entre 0 et 1)
  • Temperature moyenne: $T_{\mathrm{mercure}} = 167.0°C$
from bulkhours import constants as bkc
bkc.T_mercure := 167.0  # °C
  • Masse: $M_{\mathrm{venus}} = 4.867 \cdot 10^{24}kg$
from bulkhours import constants as bkc
bkc.M_venus := 4.867e+24  # kg
  • Distance au soleil: $d_{\odot \mathrm{venus}} = 0.72ua$
from bulkhours import constants as bkc
bkc.d_venus := 0.72  # ua
  • Rayon: $R_{\mathrm{venus}} = 3390km$
from bulkhours import constants as bkc
bkc.R_venus := 3390  # km
  • Albedo: $A_{\mathrm{venus}} = 0.77$
from bulkhours import constants as bkc
bkc.A_venus := 0.77  # Sans unité (entre 0 et 1)
  • Effet de serre: $S_{\mathrm{venus}} = 0.991$
from bulkhours import constants as bkc
bkc.S_venus := 0.991  # Sans unité (entre 0 et 1)
  • Temperature moyenne: $T_{\mathrm{venus}} = 464.0°C$
from bulkhours import constants as bkc
bkc.T_venus := 464.0  # °C
  • Masse: $M_{\mathrm{terre}} = 5.972 \cdot 10^{24}kg$
from bulkhours import constants as bkc
bkc.M_terre := 5.972e+24  # kg
  • Distance au soleil: $d_{\odot \mathrm{terre}} = 1.00ua$
from bulkhours import constants as bkc
bkc.d_terre := 1.00  # ua
  • Rayon: $R_{\mathrm{terre}} = 6371km$
from bulkhours import constants as bkc
bkc.R_terre := 6371  # km
  • Albedo: $A_{\mathrm{terre}} = 0.30$
from bulkhours import constants as bkc
bkc.A_terre := 0.30  # Sans unité (entre 0 et 1)
  • Effet de serre: $S_{\mathrm{terre}} = 0.394$
from bulkhours import constants as bkc
bkc.S_terre := 0.394  # Sans unité (entre 0 et 1)
  • Temperature moyenne: $T_{\mathrm{terre}} = 15.0°C$
from bulkhours import constants as bkc
bkc.T_terre := 15.0  # °C
  • Distance au soleil: $d_{\odot \mathrm{terre}} = 1ua = 1.500 \cdot 10^{11}m$ [149597870700.0m]
from bulkhours import constants as bkc
bkc.d_terre_solm := 1.500e+11  # m
bkc.d_terresoleil := 1.500e+11  # m
  • Masse: $M_{\mathrm{mars}} = 6.417 \cdot 10^{23}kg$
from bulkhours import constants as bkc
bkc.M_mars := 6.417e+23  # kg
  • Distance au soleil: $d_{\odot \mathrm{mars}} = 1.52ua$
from bulkhours import constants as bkc
bkc.d_mars := 1.52  # ua
  • Rayon: $R_{\mathrm{mars}} = 3390km$
from bulkhours import constants as bkc
bkc.R_mars := 3390  # km
  • Albedo: $A_{\mathrm{mars}} = 0.25$
from bulkhours import constants as bkc
bkc.A_mars := 0.25  # Sans unité (entre 0 et 1)
  • Effet de serre: $S_{\mathrm{mars}} = 0.010$
from bulkhours import constants as bkc
bkc.S_mars := 0.010  # Sans unité (entre 0 et 1)
  • Temperature moyenne: $T_{\mathrm{mars}} = -62.8°C$
from bulkhours import constants as bkc
bkc.T_mars := -62.8  # °C
  • Masse: $M_{\odot} = 1.988 \cdot 10^{30}kg$
from bulkhours import constants as bkc
bkc.M_soleil := 1.988e+30  # kg
  • Rayon: $R_{\odot} = 7 \cdot 10^{5}km$
from bulkhours import constants as bkc
bkc.R_soleil := 7e+05  # km
  • Luminosité: $L_{\odot} = 3.83 \cdot 10^{26}W$
from bulkhours import constants as bkc
bkc.L_soleil := 3.83e+26  # W
bkc.L_sol := 3.83e+26  # W
bkc.L_sun := 3.83e+26  # W
  • Temperature moyenne: $T_{\odot} = 5800.0°C$
from bulkhours import constants as bkc
bkc.T_soleil := 5800.0  # °C
  • Masse: $M_{\mathrm{lune}} = 7.350 \cdot 10^{22}kg$
from bulkhours import constants as bkc
bkc.M_lune := 7.350e+22  # kg
  • Distance au soleil: $d_{\odot \mathrm{lune}} = 1.00ua$
from bulkhours import constants as bkc
bkc.d_lune := 1.00  # ua
  • Rayon: $R_{\mathrm{lune}} = 6371km$
from bulkhours import constants as bkc
bkc.R_lune := 6371  # km
  • Albedo: $A_{\mathrm{lune}} = 0.11$
from bulkhours import constants as bkc
bkc.A_lune := 0.11  # Sans unité (entre 0 et 1)
  • Distance à la lune: $d_{\mathrm{terre} \mathrm{lune}} = 3.844 \cdot 10^{8}m$
from bulkhours import constants as bkc
bkc.d_terre_lune := 3.844e+08  # m
  • Perimètre d'un cercle de rayon 1/2🙂: $pi = 3.141593$
from bulkhours import constants as bkc
bkc.pi := 3.141593  # 

Quarterly sunspots activity (ssn)

bulkhours.get_data("sunspots")

Show columns info
Column Info
ssn SunSpot Number (aka Wolf Number or Zürich number): number of sunspots and groups of sunspots present on the surface of the Sun (source: S.I.D.C. Brussels International Sunspot Number)
smoothed_ssn smoothed ssn (source: S.I.D.C. Brussels International Sunspot Number)
observed_swpc_ssn mean monthly SWPC/SWO ssn (source: SWPC Space Weather Operations)
smoothed_swpc_ssn smoothed ssn (source: SWPC Space Weather Operations)
f10.7 mean monthly flux values (sfu) (source: Penticton, B.C. 10.7cm radio)
smoothed_f10.7 smoothed radio flux values (source: Penticton, B.C. 10.7cm radio)
Show code def get_sunspots(self): dta = pd.read_json(self.raw_data) sunspots = dta.set_index("time-tag") sunspots.index = pd.to_datetime(sunspots.index) sunspots.index.freq = sunspots.index.inferred_freq
sunspots = sunspots.resample("MS").mean()
sunspots = sunspots.resample("Q").mean().iloc[-400:]

return sunspots

Health

Coronavirus Pandemic (COVID-19) data

bulkhours.get_data("vaccinations")

Show columns info > https://github.com/owid/covid-19-data/tree/master/public/data/
Column Info
location
iso_code
date
total_vaccinations
people_vaccinated
people_fully_vaccinated
total_boosters
daily_vaccinations_raw
daily_vaccinations
total_vaccinations_per_hundred
people_vaccinated_per_hundred
people_fully_vaccinated_per_hundred
total_boosters_per_hundred
daily_vaccinations_per_million
daily_people_vaccinated
daily_people_vaccinated_per_hundred

Prostate cancer data

bulkhours.get_data("prostate")

Show columns info
Column Info
lcavol
lweight
lbph
svi
lcp
gleason
pgg45
[outcome]

Coronavirus Pandemic (COVID-19) data

bulkhours.get_data("covid")

Show columns info > https://github.com/owid/covid-19-data/tree/master/public/data/
Column Info
iso_code
continent
location
date
total_cases
new_cases
new_cases_smoothed
total_deaths
new_deaths
new_deaths_smoothed
total_cases_per_million
new_cases_per_million
new_cases_smoothed_per_million
total_deaths_per_million
new_deaths_per_million
new_deaths_smoothed_per_million
reproduction_rate
icu_patients
icu_patients_per_million
hosp_patients
hosp_patients_per_million
weekly_icu_admissions
weekly_icu_admissions_per_million
weekly_hosp_admissions
weekly_hosp_admissions_per_million
total_tests
new_tests
total_tests_per_thousand
new_tests_per_thousand
new_tests_smoothed
new_tests_smoothed_per_thousand
positive_rate
tests_per_case
tests_units
total_vaccinations
people_vaccinated
people_fully_vaccinated
total_boosters
new_vaccinations
new_vaccinations_smoothed
total_vaccinations_per_hundred
people_vaccinated_per_hundred
people_fully_vaccinated_per_hundred
total_boosters_per_hundred
new_vaccinations_smoothed_per_million
new_people_vaccinated_smoothed
new_people_vaccinated_smoothed_per_hundred
stringency_index
population_density
median_age
aged_65_older
aged_70_older
gdp_per_capita
extreme_poverty
cardiovasc_death_rate
diabetes_prevalence
female_smokers
male_smokers
handwashing_facilities
hospital_beds_per_thousand
life_expectancy
human_development_index
population
excess_mortality_cumulative_absolute
excess_mortality_cumulative
excess_mortality
excess_mortality_cumulative_per_million

Climate_Evolution

Data on CO2 and Greenhouse Gas Emissions by Our World in Data

bulkhours.get_data("co2.main")

Show columns info > https://github.com/owid/co2-data/blob/master/owid-co2-codebook.csv
Column Info
country
year
iso_code
population
gdp
cement_co2
cement_co2_per_capita
co2
co2_growth_abs
co2_growth_prct
co2_including_luc
co2_including_luc_growth_abs
co2_including_luc_growth_prct
co2_including_luc_per_capita
co2_including_luc_per_gdp
co2_including_luc_per_unit_energy
co2_per_capita
co2_per_gdp
co2_per_unit_energy
coal_co2
coal_co2_per_capita
consumption_co2
consumption_co2_per_capita
consumption_co2_per_gdp
cumulative_cement_co2
cumulative_co2
cumulative_co2_including_luc
cumulative_coal_co2
cumulative_flaring_co2
cumulative_gas_co2
cumulative_luc_co2
cumulative_oil_co2
cumulative_other_co2
energy_per_capita
energy_per_gdp
flaring_co2
flaring_co2_per_capita
gas_co2
gas_co2_per_capita
ghg_excluding_lucf_per_capita
ghg_per_capita
land_use_change_co2
land_use_change_co2_per_capita
methane
methane_per_capita
nitrous_oxide
nitrous_oxide_per_capita
oil_co2
oil_co2_per_capita
other_co2_per_capita
other_industry_co2
primary_energy_consumption
share_global_cement_co2
share_global_co2
share_global_co2_including_luc
share_global_coal_co2
share_global_cumulative_cement_co2
share_global_cumulative_co2
share_global_cumulative_co2_including_luc
share_global_cumulative_coal_co2
share_global_cumulative_flaring_co2
share_global_cumulative_gas_co2
share_global_cumulative_luc_co2
share_global_cumulative_oil_co2
share_global_cumulative_other_co2
share_global_flaring_co2
share_global_gas_co2
share_global_luc_co2
share_global_oil_co2
share_global_other_co2
share_of_temperature_change_from_ghg
temperature_change_from_ch4
temperature_change_from_co2
temperature_change_from_ghg
temperature_change_from_n2o
total_ghg
total_ghg_excluding_lucf
trade_co2
trade_co2_share

Data on CO2 and Greenhouse Gas Emissions by Our World in Data (with extra gpx data)

bulkhours.get_data("co2.mapmain")

Show columns info > https://github.com/owid/co2-data/blob/master/owid-co2-codebook.csv
Column Info
country
year
iso_code
population
gdp
cement_co2
cement_co2_per_capita
co2
co2_growth_abs
co2_growth_prct
co2_including_luc
co2_including_luc_growth_abs
co2_including_luc_growth_prct
co2_including_luc_per_capita
co2_including_luc_per_gdp
co2_including_luc_per_unit_energy
co2_per_capita
co2_per_gdp
co2_per_unit_energy
coal_co2
coal_co2_per_capita
consumption_co2
consumption_co2_per_capita
consumption_co2_per_gdp
cumulative_cement_co2
cumulative_co2
cumulative_co2_including_luc
cumulative_coal_co2
cumulative_flaring_co2
cumulative_gas_co2
cumulative_luc_co2
cumulative_oil_co2
cumulative_other_co2
energy_per_capita
energy_per_gdp
flaring_co2
flaring_co2_per_capita
gas_co2
gas_co2_per_capita
ghg_excluding_lucf_per_capita
ghg_per_capita
land_use_change_co2
land_use_change_co2_per_capita
methane
methane_per_capita
nitrous_oxide
nitrous_oxide_per_capita
oil_co2
oil_co2_per_capita
other_co2_per_capita
other_industry_co2
primary_energy_consumption
share_global_cement_co2
share_global_co2
share_global_co2_including_luc
share_global_coal_co2
share_global_cumulative_cement_co2
share_global_cumulative_co2
share_global_cumulative_co2_including_luc
share_global_cumulative_coal_co2
share_global_cumulative_flaring_co2
share_global_cumulative_gas_co2
share_global_cumulative_luc_co2
share_global_cumulative_oil_co2
share_global_cumulative_other_co2
share_global_flaring_co2
share_global_gas_co2
share_global_luc_co2
share_global_oil_co2
share_global_other_co2
share_of_temperature_change_from_ghg
temperature_change_from_ch4
temperature_change_from_co2
temperature_change_from_ghg
temperature_change_from_n2o
total_ghg
total_ghg_excluding_lucf
trade_co2
trade_co2_share

CO2 transportation info

bulkhours.get_data("co2.travel_mode")

Show columns info
Column Info
Entity
Code
Year
GHG emissions (gCO2e/km)

Greenhouse effect gaz concentrations

bulkhours.get_data("co2.concentrations")

Show columns info
Column Info
country
year
CO2 concentrations
CH4 concentrations
N2O concentrations
February
September
Mass U.S. glaciers
CSIRO
IAP
MRIJMA
NOAA
Snow cover
Sea surface temp
Sea surface temp (lower-bound)
Sea surface temp (upper-bound)
IAP.1
NOAA.1
MRIJMA.1
February.1
September.1
Show code def get_concentrations(self, zone="World", **data_info): df = self.read_raw_data(self.raw_data)
df = df.rename(columns={"Entity": "country", "Year": "year"})

if zone is not None:
    df = df.query(f"country == '{zone}'")
return df

Greenhouse effect gaz concentrations

bulkhours.get_data("co2.mapconcentrations")

Show columns info
Column Info
pop_est
continent
name
iso_a3
gdp_md_est
geometry
year
CO2 concentrations
CH4 concentrations
N2O concentrations
February
September
Mass U.S. glaciers
CSIRO
IAP
MRIJMA
NOAA
Snow cover
Sea surface temp
Sea surface temp (lower-bound)
Sea surface temp (upper-bound)
IAP.1
NOAA.1
MRIJMA.1
February.1
September.1
Show code def get_mapconcentrations(self, **kwargs): return get_mapgeneric(get_concentrations(self, **kwargs))

Les incidences économique de l'action pour le climat

bulkhours.get_data("climate.pisaniferry")

La contribution des émissions importées à l'empreinte carbone de la France

bulkhours.get_data("climate.francecarbone")

Machine_learning

Cat or not training data: keys=[train_set_x, train_set_y]

bulkhours.get_data("train_catvnoncat")

Cat or not test data: keys=[test_set_x, test_set_y, list_classes]

bulkhours.get_data("test_catvnoncat")

Clone this wiki locally