-
Notifications
You must be signed in to change notification settings - Fork 2
data
guydegnol edited this page Nov 3, 2023
·
16 revisions
- 1. Economics
- 2. Predictive maintenance
- 3. Computing
- 4. Physics
- 5. Health
- 6. Climate Evolution
- 7. Machine learning data
- Raw data: pip_dataset.csv (raw🔄)
- Enrich data: world.py (raw)
- Direct source: https://ourworldindata.org/poverty
- Reference site: https://pip.worldbank.org/
Show columns info
> https://github.com/owid/poverty-data/blob/main/datasets/pip_codebook.csv| Column | Info |
|---|---|
| country | |
| year | |
| reporting_level | |
| welfare_type | |
| ppp_version | |
| survey_year | |
| survey_comparability | |
| headcount_ratio_international_povline | |
| headcount_ratio_lower_mid_income_povline | |
| headcount_ratio_upper_mid_income_povline | |
| headcount_ratio_100 | |
| headcount_ratio_1000 | |
| headcount_ratio_2000 | |
| headcount_ratio_3000 | |
| headcount_ratio_4000 | |
| headcount_ratio_40_median | |
| headcount_ratio_50_median | |
| headcount_ratio_60_median | |
| headcount_international_povline | |
| headcount_lower_mid_income_povline | |
| headcount_upper_mid_income_povline | |
| headcount_100 | |
| headcount_1000 | |
| headcount_2000 | |
| headcount_3000 | |
| headcount_4000 | |
| headcount_40_median | |
| headcount_50_median | |
| headcount_60_median | |
| avg_shortfall_international_povline | |
| avg_shortfall_lower_mid_income_povline | |
| avg_shortfall_upper_mid_income_povline | |
| avg_shortfall_100 | |
| avg_shortfall_1000 | |
| avg_shortfall_2000 | |
| avg_shortfall_3000 | |
| avg_shortfall_4000 | |
| avg_shortfall_40_median | |
| avg_shortfall_50_median | |
| avg_shortfall_60_median | |
| total_shortfall_international_povline | |
| total_shortfall_lower_mid_income_povline | |
| total_shortfall_upper_mid_income_povline | |
| total_shortfall_100 | |
| total_shortfall_1000 | |
| total_shortfall_2000 | |
| total_shortfall_3000 | |
| total_shortfall_4000 | |
| total_shortfall_40_median | |
| total_shortfall_50_median | |
| total_shortfall_60_median | |
| income_gap_ratio_international_povline | |
| income_gap_ratio_lower_mid_income_povline | |
| income_gap_ratio_upper_mid_income_povline | |
| income_gap_ratio_100 | |
| income_gap_ratio_1000 | |
| income_gap_ratio_2000 | |
| income_gap_ratio_3000 | |
| income_gap_ratio_4000 | |
| income_gap_ratio_40_median | |
| income_gap_ratio_50_median | |
| income_gap_ratio_60_median | |
| poverty_gap_index_international_povline | |
| poverty_gap_index_lower_mid_income_povline | |
| poverty_gap_index_upper_mid_income_povline | |
| poverty_gap_index_100 | |
| poverty_gap_index_1000 | |
| poverty_gap_index_2000 | |
| poverty_gap_index_3000 | |
| poverty_gap_index_4000 | |
| mean | |
| median | |
| decile1_avg | |
| decile2_avg | |
| decile3_avg | |
| decile4_avg | |
| decile5_avg | |
| decile6_avg | |
| decile7_avg | |
| decile8_avg | |
| decile9_avg | |
| decile10_avg | |
| decile1_share | |
| decile2_share | |
| decile3_share | |
| decile4_share | |
| decile5_share | |
| decile6_share | |
| decile7_share | |
| decile8_share | |
| decile9_share | |
| decile10_share | |
| decile1_thr | |
| decile2_thr | |
| decile3_thr | |
| decile4_thr | |
| decile6_thr | |
| decile7_thr | |
| decile8_thr | |
| decile9_thr | |
| gini | |
| mld | |
| polarization | |
| palma_ratio | |
| s80_s20_ratio | |
| p90_p10_ratio | |
| p90_p50_ratio | |
| p50_p10_ratio | |
| index | |
| iso | |
| m49 | |
| region1 | |
| region2 | |
| continent |
Show code
def get_poverty(self, timeopt=None):
timeopt = self.data_info["timeopt"] if "timeopt" in self.data_info else None
df = self.read_raw_data(self.raw_data)
return geo_format(df, timeopt)
- Raw data: pip_dataset.csv (raw🔄)
- Enrich data: world.py (raw)
- Direct source: https://ourworldindata.org/poverty
- Reference site: https://pip.worldbank.org/
Show columns info
> https://github.com/owid/poverty-data/blob/main/datasets/pip_codebook.csv| Column | Info |
|---|---|
| pop_est | |
| continent | |
| name | |
| iso_a3 | |
| gdp_md_est | |
| geometry | |
| year | |
| reporting_level | |
| welfare_type | |
| ppp_version | |
| survey_year | |
| survey_comparability | |
| headcount_ratio_international_povline | |
| headcount_ratio_lower_mid_income_povline | |
| headcount_ratio_upper_mid_income_povline | |
| headcount_ratio_100 | |
| headcount_ratio_1000 | |
| headcount_ratio_2000 | |
| headcount_ratio_3000 | |
| headcount_ratio_4000 | |
| headcount_ratio_40_median | |
| headcount_ratio_50_median | |
| headcount_ratio_60_median | |
| headcount_international_povline | |
| headcount_lower_mid_income_povline | |
| headcount_upper_mid_income_povline | |
| headcount_100 | |
| headcount_1000 | |
| headcount_2000 | |
| headcount_3000 | |
| headcount_4000 | |
| headcount_40_median | |
| headcount_50_median | |
| headcount_60_median | |
| avg_shortfall_international_povline | |
| avg_shortfall_lower_mid_income_povline | |
| avg_shortfall_upper_mid_income_povline | |
| avg_shortfall_100 | |
| avg_shortfall_1000 | |
| avg_shortfall_2000 | |
| avg_shortfall_3000 | |
| avg_shortfall_4000 | |
| avg_shortfall_40_median | |
| avg_shortfall_50_median | |
| avg_shortfall_60_median | |
| total_shortfall_international_povline | |
| total_shortfall_lower_mid_income_povline | |
| total_shortfall_upper_mid_income_povline | |
| total_shortfall_100 | |
| total_shortfall_1000 | |
| total_shortfall_2000 | |
| total_shortfall_3000 | |
| total_shortfall_4000 | |
| total_shortfall_40_median | |
| total_shortfall_50_median | |
| total_shortfall_60_median | |
| income_gap_ratio_international_povline | |
| income_gap_ratio_lower_mid_income_povline | |
| income_gap_ratio_upper_mid_income_povline | |
| income_gap_ratio_100 | |
| income_gap_ratio_1000 | |
| income_gap_ratio_2000 | |
| income_gap_ratio_3000 | |
| income_gap_ratio_4000 | |
| income_gap_ratio_40_median | |
| income_gap_ratio_50_median | |
| income_gap_ratio_60_median | |
| poverty_gap_index_international_povline | |
| poverty_gap_index_lower_mid_income_povline | |
| poverty_gap_index_upper_mid_income_povline | |
| poverty_gap_index_100 | |
| poverty_gap_index_1000 | |
| poverty_gap_index_2000 | |
| poverty_gap_index_3000 | |
| poverty_gap_index_4000 | |
| mean | |
| median | |
| decile1_avg | |
| decile2_avg | |
| decile3_avg | |
| decile4_avg | |
| decile5_avg | |
| decile6_avg | |
| decile7_avg | |
| decile8_avg | |
| decile9_avg | |
| decile10_avg | |
| decile1_share | |
| decile2_share | |
| decile3_share | |
| decile4_share | |
| decile5_share | |
| decile6_share | |
| decile7_share | |
| decile8_share | |
| decile9_share | |
| decile10_share | |
| decile1_thr | |
| decile2_thr | |
| decile3_thr | |
| decile4_thr | |
| decile6_thr | |
| decile7_thr | |
| decile8_thr | |
| decile9_thr | |
| gini | |
| mld | |
| polarization | |
| palma_ratio | |
| s80_s20_ratio | |
| p90_p10_ratio | |
| p90_p50_ratio | |
| p50_p10_ratio | |
| index | |
| iso | |
| m49 | |
| region1 | |
| region2 |
Show code
def get_mappoverty(self, **kwargs):
return get_mapgeneric(get_poverty(self, **kwargs))
- Raw data: pip_dataset.csv (raw🔄)
- Enrich data: world.py (raw)
- Direct source: https://ourworldindata.org/poverty
- Reference site: https://pip.worldbank.org/
Show columns info
> https://github.com/owid/poverty-data/blob/main/datasets/pip_codebook.csv| Column | Info |
|---|---|
| country | |
| year | |
| gdp | |
| index | |
| iso | |
| m49 | |
| region1 | |
| region2 | |
| continent |
Show code
def get_gdp(self, timeopt=None, **data_info):
timeopt = self.data_info["timeopt"] if "timeopt" in self.data_info else None
df = self.read_raw_data(self.raw_data)
df = df.set_index("country").stack().to_frame().reset_index()
df.columns = ["country", "year", "gdp"]
return geo_format(df, timeopt)
- Raw data: pip_dataset.csv (raw🔄)
- Enrich data: world.py (raw)
- Direct source: https://ourworldindata.org/poverty
- Reference site: https://pip.worldbank.org/
Show columns info
> https://github.com/owid/poverty-data/blob/main/datasets/pip_codebook.csv| Column | Info |
|---|---|
| pop_est | |
| continent | |
| name | |
| iso_a3 | |
| gdp_md_est | |
| geometry | |
| year | |
| gdp | |
| index | |
| iso | |
| m49 | |
| region1 | |
| region2 |
Show code
def get_mapgdp(self, **kwargs):
return get_mapgeneric(get_gdp(self, **kwargs))
- Raw data: corruption.csv, cost_of_living.csv, richest_countries.csv, unemployment.csv, tourism.csv, continent.tsv
- Enrich data: world.py (raw)
Show columns info
| Column | Info |
|---|---|
| country | |
| annual_income | |
| corruption_index | |
| cost_index | |
| monthly_income | |
| purchasing_power_index | |
| gdp_per_capita | |
| unemployment_rate | |
| tourists_in_millions | |
| receipts_in_billions | |
| receipts_per_tourist | |
| percentage_of_gdp | |
| index_x | |
| iso_x | |
| m49_x | |
| region1_x | |
| region2_x | |
| continent_x | |
| index_y | |
| iso_y | |
| m49_y | |
| region1_y | |
| region2_y | |
| continent_y |
Show code
def get_macro(self, **data_info):
df = self.read_raw_data(self.raw_data)
return geo_format(df, None)
- Raw data: corruption.csv, cost_of_living.csv, richest_countries.csv, unemployment.csv, tourism.csv, continent.tsv
- Enrich data: world.py (raw)
Show columns info
| Column | Info |
|---|---|
| pop_est | |
| continent | |
| name | |
| iso_a3 | |
| gdp_md_est | |
| geometry | |
| annual_income | |
| corruption_index | |
| cost_index | |
| monthly_income | |
| purchasing_power_index | |
| gdp_per_capita | |
| unemployment_rate | |
| tourists_in_millions | |
| receipts_in_billions | |
| receipts_per_tourist | |
| percentage_of_gdp | |
| index_x | |
| iso_x | |
| m49_x | |
| region1_x | |
| region2_x | |
| continent_x | |
| index_y | |
| iso_y | |
| m49_y | |
| region1_y | |
| region2_y | |
| continent_y |
Show code
def get_mapmacro(self, **kwargs):
return get_mapgeneric(get_macro(self, **kwargs))
- Raw data: corruption.csv, cost_of_living.csv, richest_countries.csv, unemployment.csv, continent.tsv
Show columns info
| Column | Info |
|---|---|
| country | |
| annual_income | |
| corruption_index | |
| gdp_per_capita | |
| unemployment_rate | |
| index | |
| iso | |
| m49 | |
| region1 | |
| region2 | |
| continent |
Show code
def get_corruption(self, show_truth=False, **data_info):
show_truth = self.data_info["show_truth"] if "show_truth" in self.data_info else False
df = self.read_raw_data(self.raw_data)
if not show_truth:
df["corruption_index"] = df["corruption_index"].where(
~df.index.isin(["Spain", "Japan", "Sweden", "Romania"]), other=np.nan
)
df = df[["annual_income", "corruption_index", "gdp_per_capita", "unemployment_rate"]]
df = df.dropna(subset=["annual_income", "gdp_per_capita", "unemployment_rate"])
return geo_format(df, None)
- Raw data: life-expectancy-vs-gdp-per-capita.csv (raw🤗)
- Enrich data: world.py (raw)
- Direct source: https://ourworldindata.org/grapher/life-expectancy-vs-gdp-per-capita
- Reference site: Maddison Project Database (2020); UN WPP (2022); Zijdeman et al. (2015)
Show columns info
| Column | Info |
|---|---|
| Country | |
| Code | |
| Year | |
| Life expectancy (years) | |
| GDP per capita ($) | |
| annotations | |
| Population | |
| Continent |
Show code
def get_life_expectancy_vs_gdp_2018(self, **data_info):
return self.read_raw_data(self.raw_data) # .dropna()
- Enrich data: gmacro.py (raw)
- Direct source: https://www.insee.fr/fr/statistiques/2830547#tableau-figure1
Show columns info
| Column | Info |
|---|---|
| gdp | |
| Importations | |
| consommation_menages | |
| consommation_APU1 | |
| capital_fixe | |
| capital_fixe_non_financieres | |
| menages | |
| APU1 | |
| Exportations | |
| demaNaNe_interieure | |
| Variations de stocks | |
| Commerce exterieur | |
| date |
Show code
def get_fr_qgdp(self):
data = StringIO(
"""quarter;gdp;Importations;consommation_menages;consommation_APU1;capital_fixe;capital_fixe_non_financieres;menages;APU1;Exportations;demande_interieure;Variations de stocks;Commerce exterieur
2022-T4;0,1;-1,9;-0,9;0,2;0,8;1,2;-0,2;0,3;-0,3;-0,2;-0,2;0,5
2022-T3;0,2;3,9;0,5;0,2;2,3;3,8;-0,7;1,0;0,8;0,9;0,3;-1,0
2022-T2;0,5;1,5;0,5;0,0;0,3;0,5;-0,1;-0,2;1,0;0,3;0,3;-0,2
2022-T1;-0,2;1,3;-1,0;0,2;0,4;0,2;0,0;1,1;1,7;-0,4;0,1;0,1
2021-T4;0,6;5,0;0,6;0,6;-0,3;-0,2;-0,7;-0,5;2,9;0,4;0,8;-0,6
2021-T3;3,3;0,6;5,4;3,1;0,5;0,9;1,2;-1,6;2,1;3,7;-0,8;0,4
2021-T2;1,1;1,9;1,2;0,6;2,1;1,8;4,0;0,5;2,6;1,2;-0,3;0,1
2021-T1;0,1;1,4;0,5;-0,6;0,7;0,6;0,4;-1,5;-0,4;0,3;0,3;-0,6
2020-T4;-0,9;0,8;-5,5;-0,1;2,5;2,0;6,1;0,4;3,7;-2,4;0,7;0,8
2020-T3;18,4;17,7;18,2;17,6;24,2;24,8;28,8;17,4;22,4;19,7;-1,9;0,6
2020-T2;-13,5;-19,2;-11,6;-11,8;-14,3;-13,5;-16,3;-12,5;-25,3;-12,3;0,4;-1,6
2020-T1;-5,6;-5,5;-5,2;-3,3;-9,6;-8,8;-14,2;-5,1;-6,8;-5,8;0,6;-0,3
2019-T4;-0,3;-1,0;0,2;0,1;0,3;0,4;0,4;0,3;-1,1;0,2;-0,5;0,0
2019-T3;0,0;-0,4;0,2;0,4;0,8;0,6;0,9;1,2;-1,1;0,4;-0,1;-0,2
2019-T2;0,7;0,0;0,6;0,3;1,7;1,2;1,9;2,6;0,3;0,8;-0,2;0,1
2019-T1;0,7;2,2;0,8;0,1;1,0;0,4;0,4;3,0;0,3;0,7;0,6;-0,6
2018-T4;0,6;1,3;0,2;0,5;0,8;0,3;0,0;3,0;2,2;0,4;-0,1;0,3
2018-T3;0,4;-1,1;0,4;-0,1;0,7;0,6;0,4;1,2;0,2;0,4;-0,4;0,4
2018-T2;0,4;1,0;-0,1;0,3;1,3;1,7;0,7;1,5;0,9;0,3;0,2;-0,1
2018-T1;0,1;0,6;0,4;0,0;0,1;0,1;0,1;0,4;-0,2;0,2;0,1;-0,2
2017-T4;0,6;1,3;0,0;0,1;0,8;1,4;0,4;0,0;2,5;0,2;0,0;0,4
2017-T3;0,9;1,9;0,7;0,5;1,3;1,9;0,6;0,4;1,5;0,8;0,2;-0,1
2017-T2;0,8;-0,1;0,3;0,5;1,1;1,2;1,6;0,1;2,7;0,6;-0,6;0,9
2017-T1;0,8;2,2;0,4;0,1;2,4;3,1;2,1;-0,4;-0,3;0,8;0,8;-0,8
2016-T4;0,6;0,8;0,9;0,4;0,9;0,5;1,5;0,5;1,4;0,8;-0,4;0,2
2016-T3;0,3;2,0;0,0;0,5;0,4;0,0;1,1;-0,5;0,5;0,2;0,6;-0,5
2016-T2;-0,3;-1,7;0,0;0,2;-0,2;-0,9;0,7;0,1;0,2;0,0;-0,9;0,6
2016-T1;0,6;0,6;1,3;0,4;1,1;1,8;0,4;-0,7;-0,2;1,0;-0,1;-0,2
2015-T4;0,2;1,9;-0,1;0,4;1,1;1,1;0,8;1,1;0,9;0,3;0,3;-0,3
2015-T3;0,2;1,8;0,2;0,2;1,2;1,0;0,7;2,8;0,0;0,4;0,4;-0,6
2015-T2;0,1;0,1;0,3;0,2;-0,8;0,4;-0,3;-5,5;1,6;0,0;-0,4;0,5
2015-T1;0,5;2,1;0,5;0,2;1,0;1,6;0,0;0,2;0,9;0,6;0,4;-0,4
2014-T4;0,0;1,1;0,3;0,3;-0,7;-0,6;-0,8;-1,8;1,7;0,1;-0,3;0,2
2014-T3;0,6;1,8;0,3;0,4;0,5;1,5;-1,3;-1,4;1,6;0,4;0,3;-0,1
2014-T2;0,1;1,1;0,6;0,3;-0,3;0,3;-2,1;-1,5;0,0;0,3;0,1;-0,3
2014-T1;0,0;1,0;-0,5;0,3;-0,5;-0,5;-0,8;-1,8;0,7;-0,3;0,4;-0,1
2013-T4;0,6;1,2;0,6;0,3;0,8;1,3;0,4;-1,0;1,2;0,6;0,1;0,0
2013-T3;-0,1;1,0;0,0;0,3;0,1;0,6;-0,1;-1,1;-0,3;0,1;0,2;-0,4
2013-T2;0,7;2,2;0,4;0,5;0,2;0,7;0,0;0,0;2,3;0,4;0,3;0,0
2013-T1;0,1;-0,2;0,0;0,4;-0,6;-0,5;0,3;-0,1;0,0;0,0;0,1;0,1
2012-T4;-0,1;0,0;0,2;0,3;-0,4;-0,2;-0,2;-0,1;0,1;0,1;-0,3;0,0
2012-T3;0,2;0,4;0,1;0,3;0,3;0,6;-0,3;0,7;0,0;0,2;0,2;-0,1
2012-T2;-0,2;0,3;-0,2;0,5;-0,8;-0,9;-2,0;0,6;0,8;-0,2;-0,1;0,1
2012-T1;0,0;0,9;0,2;0,5;-0,5;-1,3;-0,3;0,4;0,5;0,1;0,0;-0,1
2011-T4;0,2;-0,8;-0,4;0,3;1,2;1,5;0,3;0,9;1,8;0,1;-0,7;0,7
2011-T3;0,5;0,1;0,2;0,6;0,6;0,8;-0,5;0,2;0,6;0,4;0,0;0,1
2011-T2;-0,1;-1,2;-1,2;0,1;0,2;0,3;-0,3;-0,6;1,0;-0,6;-0,2;0,6
2011-T1;1,1;3,9;0,5;0,3;0,2;1,0;-0,1;-2,8;2,4;0,4;1,2;-0,5
2010-T4;0,7;0,9;0,8;0,1;0,5;1,2;0,5;-1,7;1,5;0,6;0,0;0,1
2010-T3;0,6;2,8;0,6;0,4;1,3;1,6;1,7;-0,1;1,0;0,7;0,4;-0,5
2010-T2;0,5;4,2;0,3;0,2;0,8;1,4;1,3;-1,0;3,3;0,4;0,3;-0,2
2010-T1;0,3;0,7;0,2;0,1;1,0;1,9;0,9;-0,7;3,7;0,4;-0,8;0,8
2009-T4;0,7;3,7;0,7;0,5;0,5;1,0;-0,1;0,7;0,1;0,7;1,0;-1,0
2009-T3;0,2;1,0;0,0;0,5;-0,6;-0,5;-1,2;0,3;1,8;0,0;0,0;0,2
2009-T2;0,0;-1,9;0,7;0,7;-2,5;-3,5;-2,5;0,9;0,0;0,0;-0,5;0,5
2009-T1;-1,7;-7,1;-0,1;0,7;-4,1;-6,0;-5,3;2,9;-7,5;-0,8;-0,9;0,0
2008-T4;-1,5;-2,7;-0,4;0,8;-3,2;-4,2;-4,5;1,6;-4,7;-0,8;-0,2;-0,5
2008-T3;-0,2;-0,4;0,1;0,5;-0,8;-0,2;-2,9;-0,1;-0,9;0,0;0,0;-0,2
2008-T2;-0,5;-0,8;0,0;0,1;-1,1;-0,9;-1,5;-1,9;-1,5;-0,3;-0,1;-0,2
2008-T1;0,5;1,1;-0,4;0,1;1,6;2,7;-0,3;0,3;2,3;0,2;0,0;0,3
2007-T4;0,2;0,6;0,3;0,2;0,5;1,2;-0,2;-1,3;0,4;0,3;-0,1;-0,1
2007-T3;0,5;0,7;0,9;0,4;1,2;2,4;-0,2;-0,3;0,2;0,9;-0,2;-0,2
2007-T2;0,7;2,8;1,0;0,5;1,2;2,0;0,7;-0,1;1,6;0,9;0,1;-0,4
2007-T1;0,7;1,0;0,6;0,6;1,8;2,7;0,9;1,8;0,3;0,9;0,0;-0,2
2006-T4;0,7;2,6;0,5;0,5;1,5;2,3;0,7;1,0;1,9;0,8;0,1;-0,2
2006-T3;0,1;-0,6;0,2;0,1;0,7;0,9;0,7;-0,1;-1,5;0,3;0,0;-0,2
2006-T2;1,0;1,6;0,6;0,4;1,9;2,5;1,6;0,2;1,5;0,8;0,2;0,0
2006-T1;0,8;0,5;0,8;0,6;0,6;0,3;1,4;-0,9;2,2;0,7;-0,4;0,5
2005-T4;0,7;3,3;0,6;0,1;0,6;0,7;1,3;-1,3;2,3;0,5;0,5;-0,3
2005-T3;0,6;2,5;0,5;0,3;1,0;1,0;1,2;0,7;2,2;0,6;0,0;-0,1
2005-T2;0,3;0,9;0,2;0,4;0,5;0,2;1,7;0,5;1,4;0,3;-0,2;0,1
2005-T1;0,2;0,4;0,6;0,3;0,6;0,8;1,0;0,2;-0,7;0,5;0,0;-0,3
2004-T4;0,8;2,5;1,5;0,3;1,4;1,8;0,8;1,9;2,0;1,1;-0,3;-0,1
2004-T3;0,3;1,8;0,0;0,3;0,3;0,3;0,6;0,3;0,4;0,1;0,5;-0,4
2004-T2;0,6;2,0;0,4;0,5;0,5;0,2;1,1;0,5;1,7;0,5;0,2;0,0
2004-T1;1,0;0,7;0,6;0,6;1,1;1,0;1,3;0,8;0,4;0,7;0,4;-0,1
2003-T4;0,7;1,7;0,3;0,8;0,2;-0,4;0,9;0,7;2,6;0,4;0,0;0,3
2003-T3;0,7;0,9;0,6;0,4;1,7;2,1;1,0;0,9;1,1;0,7;-0,1;0,1
2003-T2;-0,2;-0,7;0,1;0,6;0,0;-0,9;0,5;1,4;-0,8;0,2;-0,3;-0,1
2003-T1;0,1;0,1;0,4;0,0;0,1;-0,5;0,4;1,1;-2,2;0,2;0,5;-0,6
2002-T4;0,2;0,0;0,6;0,7;1,1;0,9;0,7;1,5;0,1;0,7;-0,5;0,0
2002-T3;0,2;0,8;0,6;0,6;0,4;0,3;0,8;0,3;0,4;0,5;-0,2;-0,1
2002-T2;0,4;0,7;0,5;0,9;-0,6;-1,7;0,8;0,7;2,5;0,3;-0,4;0,5
2002-T1;0,6;2,5;0,4;0,2;-0,6;-1,1;0,8;-0,6;1,5;0,2;0,6;-0,2
2001-T4;-0,1;-0,6;0,4;0,3;-0,2;-0,8;0,8;0,6;-1,3;0,3;-0,1;-0,2
2001-T3;0,3;-1,6;0,2;0,3;0,1;0,5;0,4;-0,7;0,1;0,3;-0,5;0,5
2001-T2;0,1;-0,7;0,7;0,2;-0,3;-0,1;-0,1;-0,9;-2,3;0,4;0,2;-0,5
2001-T1;0,5;-1,4;1,0;0,2;0,6;1,2;0,3;-0,3;0,2;0,7;-0,7;0,4
2000-T4;0,8;3,2;0,3;0,2;0,6;1,0;0,0;0,2;4,0;0,3;0,2;0,3
2000-T3;0,7;3,8;0,6;0,3;1,9;3,2;0,1;0,8;2,1;0,8;0,3;-0,4
2000-T2;1,0;4,4;0,7;0,4;1,4;1,3;0,4;2,8;3,5;0,8;0,4;-0,2
2000-T1;1,0;4,3;0,7;0,6;1,7;1,2;1,5;3,2;4,0;0,9;0,2;0,0
1999-T4;1,4;4,4;1,0;0,6;1,9;1,5;1,2;3,3;2,4;1,1;0,8;-0,4
1999-T3;1,1;2,5;2,5;0,6;1,9;2,0;1,4;1,9;3,8;1,9;-1,1;0,4
1999-T2;0,3;1,8;0,4;0,3;1,7;2,1;1,3;1,0;2,1;0,7;-0,5;0,1
1999-T1;1,1;0,9;0,1;0,6;2,3;2,5;2,9;0,8;-0,3;0,7;0,7;-0,3
1998-T4;0,7;0,7;0,6;0,5;1,4;1,3;1,8;0,8;-0,3;0,7;0,2;-0,2
1998-T3;0,7;1,5;1,4;0,0;1,9;1,9;1,8;1,4;1,5;1,1;-0,4;0,0
1998-T2;0,8;2,0;1,0;-0,3;2,0;2,6;1,4;0,8;1,6;0,9;0,0;-0,1
1998-T1;0,9;4,0;0,9;-0,5;1,6;2,2;0,7;0,5;1,7;0,7;0,7;-0,5
1997-T4;1,0;2,8;1,2;-0,2;1,5;2,1;1,0;-0,1;3,0;0,9;-0,1;0,1
1997-T3;1,0;4,3;1,0;0,1;0,6;0,8;1,2;-1,4;3,1;0,6;0,5;-0,2
1997-T2;1,0;2,7;0,2;0,1;1,5;2,4;1,4;-1,3;4,5;0,4;0,1;0,5
1997-T1;0,3;1,8;-0,1;0,1;-1,0;-1,3;0,5;-2,4;3,4;-0,2;0,2;0,4
1996-T4;0,3;1,4;-1,1;0,6;-0,2;0,0;0,7;-1,8;3,1;-0,5;0,3;0,4
1996-T3;0,5;-0,2;1,4;0,4;0,5;0,6;1,1;-0,7;2,0;1,0;-0,9;0,5
1996-T2;0,1;0,4;-0,4;0,7;-0,3;-1,3;0,4;1,0;-0,2;-0,1;0,4;-0,1
1996-T1;0,7;0,9;1,7;0,8;0,8;1,0;0,3;0,2;1,8;1,2;-0,8;0,2
1995-T4;0,0;-0,4;-0,1;0,5;0,1;-0,1;-0,7;1,1;0,7;0,1;-0,4;0,2
1995-T3;0,2;0,6;-0,6;0,4;0,1;0,5;-0,4;-1,0;-0,9;-0,2;0,7;-0,3
1995-T2;0,6;3,3;1,6;0,1;-0,5;-0,7;-0,7;-0,1;2,6;0,8;-0,1;-0,1
1995-T1;0,3;0,0;0,1;-0,3;0,8;1,3;0,5;-1,6;1,5;0,1;-0,2;0,3
1994-T4;0,9;3,8;0,5;0,0;0,4;0,4;1,3;-1,0;4,6;0,4;0,3;0,2
1994-T3;0,9;3,2;0,4;0,0;0,8;1,7;1,5;-1,8;3,1;0,4;0,4;0,0
1994-T2;1,0;3,2;0,8;0,0;1,1;1,5;1,6;0,0;3,6;0,7;0,2;0,1
1994-T1;0,7;2,3;0,0;-0,2;1,6;1,4;1,9;2,7;0,0;0,3;0,8;-0,5
1993-T4;0,2;2,6;0,4;0,2;-0,3;-0,2;0,6;-0,2;3,4;0,2;-0,2;0,2
1993-T3;0,2;0,8;0,1;0,2;-1,3;-1,2;-0,7;-1,1;1,7;-0,2;0,2;0,2
1993-T2;0,0;-3,4;0,7;1,1;-1,8;-1,6;-1,5;-2,1;-2,8;0,2;-0,4;0,1
1993-T1;-0,7;0,2;-1,4;1,1;-1,7;-2,7;-1,3;-0,7;1,8;-0,9;-0,1;0,3
1992-T4;-0,2;-1,8;0,6;1,0;-1,4;-2,2;-1,7;-0,4;-1,3;0,2;-0,5;0,1
1992-T3;-0,1;-1,7;0,5;1,2;-1,1;-1,7;-0,7;-0,1;-0,8;0,3;-0,5;0,2
1992-T2;0,1;-0,8;0,2;0,7;-1,2;-0,9;-2,0;-0,7;0,7;0,0;-0,3;0,3
1992-T1;0,8;3,8;0,1;0,6;0,6;1,0;0,8;1,2;2,2;0,4;0,8;-0,4
1991-T4;0,7;-0,6;0,3;0,9;-0,7;-0,8;-3,4;0,9;2,2;0,2;-0,2;0,6
1991-T3;0,2;0,0;-0,1;0,5;-0,1;-0,5;-1,0;1,2;2,6;0,1;-0,4;0,6
1991-T2;0,4;0,0;0,1;1,3;0,4;0,6;-1,5;1,7;2,8;0,5;-0,6;0,6
1991-T1;0,1;2,9;-0,1;0,9;-0,9;-0,6;-2,7;0,1;0,7;-0,1;0,7;-0,5
1990-T4;0,0;-0,2;0,6;0,6;-0,1;0,0;-0,6;0,0;1,8;0,4;-0,9;0,4
1990-T3;0,5;-0,3;0,0;1,2;0,6;1,4;-2,0;1,0;0,6;0,4;-0,1;0,2
1990-T2;0,5;1,6;0,4;0,3;0,4;0,6;-1,2;1,5;-1,2;0,4;0,7;-0,6
1990-T1;0,4;0,1;1,1;1,2;1,4;1,9;-0,7;2,5;1,3;1,2;-1,0;0,2
1989-T4;1,3;4,2;0,4;0,8;2,0;2,7;0,2;2,1;3,3;0,9;0,7;-0,2
1989-T3;1,1;0,1;1,1;0,6;1,2;1,5;0,5;1,3;-0,4;1,0;0,1;-0,1
1989-T2;1,2;2,6;0,4;0,1;1,6;1,4;3,8;-0,4;2,6;0,6;0,6;0,0
1989-T1;1,2;1,9;1,0;0,6;2,4;3,5;0,7;1,7;4,3;1,2;-0,5;0,5
1988-T4;0,9;1,6;0,8;-0,2;1,6;1,1;3,6;1,0;1,4;0,8;0,1;-0,1
1988-T3;1,3;4,3;1,3;0,6;2,0;2,4;2,2;1,0;3,3;1,3;0,2;-0,2
1988-T2;0,8;0,5;0,5;0,6;1,8;2,0;0,7;2,8;1,5;0,8;-0,2;0,2
1988-T1;1,2;1,8;0,0;1,1;2,5;2,3;2,2;2,9;1,2;0,8;0,6;-0,1
1987-T4;1,4;2,3;1,8;1,3;1,9;2,5;-0,1;2,8;1,9;1,7;-0,2;-0,1
1987-T3;0,7;1,9;0,1;0,8;2,1;2,2;1,4;2,9;2,9;0,7;-0,2;0,2
1987-T2;1,5;2,4;1,3;0,7;2,3;3,0;0,0;3,4;2,6;1,4;0,0;0,0
1987-T1;0,1;4,1;1,0;0,4;0,3;0,4;2,2;-2,3;-0,9;0,7;0,5;-1,0
1986-T4;0,1;-2,5;0,2;0,8;0,8;0,9;0,7;0,9;-1,2;0,5;-0,7;0,4
1986-T3;0,5;3,2;0,5;0,7;0,9;1,3;-0,2;1,2;2,1;0,7;0,1;-0,3
1986-T2;1,1;1,7;1,6;0,7;1,5;1,4;-0,1;3,7;-1,9;1,4;0,6;-0,8
1986-T1;0,4;1,7;0,9;0,5;0,6;1,9;0,2;-2,5;-0,9;0,7;0,2;-0,6
1985-T4;0,4;1,8;1,1;0,8;0,6;0,5;0,7;0,5;1,2;0,9;-0,4;-0,1
1985-T3;0,5;1,9;0,6;0,4;1,4;1,4;1,3;1,5;-1,8;0,7;0,7;-0,9
1985-T2;0,9;0,6;0,5;0,8;1,7;2,7;-1,9;4,0;2,3;0,8;-0,3;0,4
1985-T1;0,3;1,6;1,4;0,8;-0,1;0,0;-0,9;0,6;-0,4;0,9;-0,1;-0,5
1984-T4;-0,1;1,9;-0,7;0,6;0,8;1,7;-1,5;1,5;-0,1;-0,1;0,5;-0,5
1984-T3;0,7;-1,3;0,2;1,2;-0,2;0,6;-3,1;1,5;1,3;0,3;-0,3;0,6
1984-T2;0,4;2,4;0,4;0,7;-0,5;-1,0;0,3;-1,1;3,8;0,2;-0,1;0,3
1984-T1;0,4;1,3;0,4;0,0;0,4;0,8;-1,2;1,0;-0,3;0,3;0,5;-0,4
1983-T4;0,6;0,6;0,5;0,6;-0,5;-0,2;-1,4;-0,4;1,8;0,3;0,0;0,3
1983-T3;0,1;2,6;-0,4;0,7;-0,4;-0,3;-0,5;-1,0;4,0;-0,2;0,0;0,3
1983-T2;0,0;-3,2;-0,2;0,0;-1,1;-1,1;-0,7;-1,9;2,3;-0,4;-0,9;1,2
1983-T1;0,4;-1,3;-0,2;0,5;-0,5;-1,2;0,5;0,0;-1,1;-0,1;0,5;0,1
1982-T4;0,6;-0,2;1,2;0,7;-1,0;0,0;-2,8;-1,2;3,6;0,6;-0,8;0,8
1982-T3;0,0;-1,2;0,0;1,7;-1,5;-2,0;-0,7;-1,5;-0,3;0,0;-0,3;0,2
1982-T2;0,7;2,0;1,0;0,7;0,4;1,4;-2,3;1,8;-2,6;0,8;0,9;-1,0
1982-T1;0,8;0,1;0,8;1,5;-0,6;0,4;-2,8;-0,1;-0,7;0,6;0,4;-0,2
1981-T4;0,6;1,3;1,4;0,7;0,6;1,1;-1,2;2,2;-2,5;1,0;0,4;-0,8
1981-T3;0,7;3,0;0,1;0,9;-0,1;-0,3;-0,5;0,9;3,2;0,2;0,4;0,0
1981-T2;0,7;-0,5;1,5;0,8;0,2;-0,2;0,1;1,1;3,0;1,0;-1,1;0,8
1981-T1;0,3;-1,8;-0,1;0,7;-0,5;-0,8;-1,4;1,2;1,1;0,0;-0,3;0,7
1980-T4;-0,2;-1,7;0,7;0,5;-0,7;-1,1;-0,5;-0,4;1,1;0,3;-1,1;0,6
1980-T3;0,2;0,5;0,7;0,8;-0,1;0,8;-1,6;0,0;-1,0;0,5;-0,1;-0,3
1980-T2;-0,7;-0,5;-1,2;0,8;-0,2;0,7;-1,4;-0,4;-0,9;-0,5;-0,1;-0,1
1980-T1;1,0;3,6;0,8;nd;0,8;1,2;1,3;-0,8;1,5;0,8;0,6;-0,4
1979-T4;0,3;0,2;0,5;nd;1,7;2,5;1,2;0,3;0,5;0,8;-0,6;0,1
1979-T3;1,3;3,9;0,2;nd;2,4;3,7;0,8;1,4;3,8;0,9;0,4;0,0
1979-T2;0,4;0,8;0,7;nd;0,8;1,2;-0,4;1,8;0,6;0,7;-0,2;0,0
1979-T1;1,1;3,3;1,0;nd;-0,7;-1,3;0,5;-1,9;1,9;0,5;0,8;-0,2
1978-T4;1,1;2,7;1,4;nd;1,3;1,3;1,0;1,7;1,6;1,3;0,0;-0,2
1978-T3;0,6;0,4;0,3;nd;0,3;-0,5;1,9;-0,2;1,3;0,5;-0,1;0,2
1978-T2;1,1;1,6;1,6;nd;1,4;1,7;1,1;1,2;1,5;1,5;-0,4;0,0
1978-T1;1,4;2,3;1,2;nd;1,5;1,1;3,9;-1,0;1,3;1,4;0,1;-0,2
1977-T4;0,8;0,3;0,4;nd;-0,4;-1,1;0,9;-0,7;1,7;0,4;0,1;0,3
1977-T3;0,8;-0,4;1,3;nd;0,3;0,1;0,6;0,1;2,3;1,0;-0,7;0,5
1977-T2;0,4;-0,2;0,2;nd;-0,5;0,8;0,5;-6,1;1,8;0,2;-0,2;0,4
1977-T1;1,1;-1,2;0,0;nd;0,9;2,4;-1,9;0,6;0,8;0,3;0,4;0,4
1976-T4;0,7;0,3;1,0;nd;-0,6;-1,1;1,3;-2,6;3,5;0,4;-0,4;0,6
1976-T3;1,2;3,9;1,4;nd;-1,7;-1,3;-2,3;-2,2;1,0;0,5;1,3;-0,6
1976-T2;1,4;4,7;0,9;nd;0,4;-0,7;3,2;-0,8;3,5;0,7;0,9;-0,3
1976-T1;1,0;7,4;1,4;nd;2,3;4,4;0,0;1,2;3,2;1,5;0,2;-0,7
1975-T4;2,1;5,0;1,9;nd;2,0;3,9;-0,6;1,8;1,7;1,9;0,9;-0,7
1975-T3;0,0;1,4;1,6;nd;-1,5;-2,7;-1,6;2,1;-0,1;0,7;-0,5;-0,3
1975-T2;0,0;0,2;0,8;nd;-0,6;-0,5;-2,6;2,6;-0,7;0,6;-0,5;-0,2
1975-T1;-0,8;-6,3;0,2;nd;-2,1;-2,9;-3,0;1,9;-4,1;-0,2;-1,2;0,7
1974-T4;-1,8;-6,1;-0,4;nd;-2,6;-4,5;-1,8;1,1;-0,6;-0,6;-2,2;0,9
1974-T3;1,1;-0,5;0,1;nd;-0,9;-2,1;-0,5;1,8;2,7;0,0;0,5;0,6
1974-T2;0,7;0,7;0,6;nd;0,8;1,4;0,1;-0,1;0,8;0,8;-0,2;0,0
1974-T1;1,6;2,9;0,2;nd;0,4;-0,9;2,5;0,6;4,2;0,4;0,9;0,3
1973-T4;1,2;2,0;2,4;nd;1,2;0,8;2,4;0,2;4,3;1,7;-1,0;0,4
1973-T3;1,5;4,1;0,5;nd;2,3;2,8;2,3;0,3;2,5;1,0;0,8;-0,3
1973-T2;1,4;1,5;0,7;nd;1,8;1,7;2,9;-0,3;2,6;1,1;0,2;0,2
1973-T1;1,8;5,3;2,4;nd;1,4;1,0;1,9;1,1;2,9;1,9;0,2;-0,4
1972-T4;1,6;5,7;0,8;nd;2,0;1,7;2,1;1,7;5,1;1,2;0,4;-0,1
1972-T3;1,4;1,4;2,3;nd;1,5;1,3;2,1;0,6;0,0;1,8;-0,2;-0,2
1972-T2;0,7;1,2;0,2;nd;1,3;1,0;2,1;0,4;3,9;0,7;-0,4;0,5
1972-T1;1,1;8,2;1,6;nd;1,7;0,8;5,0;-0,8;3,9;1,4;0,3;-0,6
1971-T4;1,0;-0,4;1,1;nd;0,9;1,7;0,2;-0,6;0,1;1,0;-0,2;0,1
1971-T3;1,3;5,4;1,5;nd;1,4;3,1;-1,4;1,0;4,3;1,4;0,1;-0,1
1971-T2;1,1;2,6;1,6;nd;1,8;3,0;-0,7;2,3;1,3;1,5;-0,2;-0,2
1971-T1;1,6;-1,3;0,8;nd;3,0;2,1;8,5;-2,1;2,3;1,5;-0,6;0,6
1970-T4;1,3;1,2;2,5;nd;0,2;2,0;-3,3;1,3;2,6;1,7;-0,6;0,2
1970-T3;1,1;4,1;0,6;nd;1,4;0,7;3,1;0,8;1,9;1,0;0,4;-0,3
1970-T2;1,8;3,7;1,2;nd;2,3;1,7;3,6;1,8;4,0;1,5;0,2;0,1
1970-T1;1,5;1,8;2,0;nd;-0,1;1,1;-3,6;1,4;4,6;1,3;-0,2;0,4
1969-T4;1,5;-1,1;-0,8;nd;1,6;-1,2;8,0;-0,2;4,9;0,2;0,4;0,9
1969-T3;1,4;-1,1;1,0;nd;1,4;0,3;3,3;1,7;3,1;1,2;-0,4;0,6
1969-T2;2,1;6,3;2,8;nd;3,7;5,3;1,6;2,1;3,3;2,8;-0,2;-0,5
1969-T1;0,9;4,4;-0,4;nd;-0,4;-0,1;-0,5;0,0;3,6;-0,1;1,1;-0,1
1968-T4;1,1;5,4;2,6;nd;1,7;3,2;-0,5;0,8;-2,6;2,1;0,2;-1,2
1968-T3;8,0;20,1;5,0;nd;9,1;14,3;4,1;2,2;26,5;5,7;1,6;0,8
1968-T2;-5,3;-8,4;-0,5;nd;-5,6;-8,0;0,0;-6,2;-14,1;-1,6;-2,8;-0,9
1968-T1;2,7;5,2;0,1;nd;2,7;2,7;4,4;0,1;6,1;0,9;1,7;0,1
1967-T4;1,0;1,8;0,7;nd;1,7;2,8;0,7;0,0;3,9;1,0;-0,2;0,3
1967-T3;1,1;2,1;1,2;nd;1,3;0,7;3,0;0,5;0,9;1,2;0,1;-0,2
1967-T2;1,2;-1,9;0,8;nd;1,6;1,4;3,2;0,4;2,6;1,0;-0,5;0,6
1967-T1;1,7;4,3;1,5;nd;3,0;2,4;3,2;4,2;3,2;1,9;-0,1;-0,1
1966-T4;0,6;3,4;1,7;nd;0,9;0,9;-0,6;2,8;-1,2;1,4;-0,1;-0,6
1966-T3;1,2;4,2;0,5;nd;1,8;3,0;-0,4;1,7;2,5;0,9;0,4;-0,2
1966-T2;1,6;2,3;1,9;nd;2,1;1,9;3,2;1,3;1,6;1,8;-0,1;-0,1
1966-T1;0,9;3,1;0,9;nd;1,5;2,9;0,9;-1,0;0,4;1,1;0,1;-0,3
1965-T4;1,5;2,2;0,3;nd;3,3;1,8;9,0;0,1;3,0;1,1;0,3;0,1
1965-T3;1,5;1,5;1,7;nd;0,3;0,0;0,3;1,1;2,9;1,2;0,1;0,2
1965-T2;1,8;2,7;2,5;nd;2,3;2,0;2,5;2,6;2,4;2,1;-0,3;0,0
1965-T1;0,5;-1,5;-0,3;nd;0,3;-0,7;0,9;1,8;2,9;0,1;-0,2;0,6
1964-T4;1,4;0,5;1,2;nd;1,4;-0,9;4,6;3,6;4,4;1,2;-0,3;0,5
1964-T3;0,8;-0,3;0,8;nd;2,7;2,0;4,2;2,4;0,7;1,3;-0,7;0,1
1964-T2;1,3;2,1;0,2;nd;1,2;0,8;1,9;1,8;-0,5;0,6;1,0;-0,3
1964-T1;2,2;5,9;2,0;nd;3,3;2,0;5,4;4,5;4,4;2,2;0,2;-0,2
1963-T4;-0,2;4,7;1,3;nd;0,0;2,1;-6,1;1,5;-0,4;0,9;-0,5;-0,7
1963-T3;3,4;2,4;2,0;nd;5,3;3,5;11,4;3,2;3,8;2,7;0,5;0,2
1963-T2;4,5;10,9;2,9;nd;6,0;4,2;3,8;14,2;4,8;3,4;1,7;-0,7
1963-T1;-1,0;0,1;1,7;nd;-0,1;0,5;3,8;-6,3;1,5;1,0;-2,2;0,2
1962-T4;1,1;1,4;0,9;nd;-0,2;-1,1;-0,1;2,3;1,9;0,7;0,4;0,1
1962-T3;1,9;4,1;1,7;nd;2,2;3,1;-0,1;2,5;-0,4;1,7;0,8;-0,5
1962-T2;1,5;-4,1;1,6;nd;1,0;0,7;0,0;2,9;-0,3;1,4;-0,3;0,5
1962-T1;2,2;4,2;3,2;nd;2,0;2,4;0,2;3,3;1,0;2,6;0,0;-0,4
1961-T4;1,8;3,0;1,2;nd;1,5;1,2;1,0;3,4;-0,7;1,4;0,9;-0,5
1961-T3;0,9;0,4;0,9;nd;2,7;2,9;1,8;3,3;0,4;1,4;-0,5;0,0
1961-T2;0,6;4,4;0,9;nd;0,6;-1,1;2,8;3,2;2,4;0,9;-0,1;-0,2
1961-T1;1,4;0,2;2,5;nd;5,3;6,9;3,6;2,8;1,4;2,8;-1,6;0,2
1960-T4;1,1;0,5;1,6;nd;2,3;2,0;3,1;2,3;0,1;1,6;-0,5;0,0
1960-T3;1,7;6,0;1,0;nd;2,7;3,1;2,4;1,7;3,3;1,3;0,6;-0,2
1960-T2;2,5;-1,0;1,4;nd;2,7;3,8;1,5;1,1;0,8;1,5;0,8;0,2
1960-T1;2,0;3,5;2,0;nd;-0,5;-1,5;0,6;0,8;6,8;1,0;0,4;0,6
1959-T4;2,5;7,6;0,8;nd;2,8;4,4;0,3;1,3;5,3;1,2;1,5;-0,2
1959-T3;1,1;0,7;0,7;nd;0,9;0,9;0,0;2,2;4,3;0,7;-0,1;0,5
1959-T2;1,2;4,4;-0,3;nd;2,6;3,8;-0,2;3,2;7,9;0,5;0,2;0,5
1959-T1;0,2;-3,0;0,9;nd;0,3;-0,6;-0,3;4,0;-1,6;0,7;-0,6;0,1
1958-T4;0,3;-2,0;1,7;nd;1,6;1,7;0,0;3,4;4,9;1,4;-1,9;0,9
1958-T3;-0,2;-2,0;-0,5;nd;0,3;-0,6;0,4;2,2;1,7;-0,2;-0,5;0,5
1958-T2;0,4;0,7;0,1;nd;-1,0;-2,6;1,0;0,9;-1,7;-0,2;0,9;-0,3
1958-T1;1,3;0,4;-1,1;nd;3,6;5,8;1,7;-0,6;1,0;0,1;1,1;0,1
1957-T4;0,3;-4,0;0,4;nd;1,1;0,8;2,2;0,0;-0,5;0,4;-0,6;0,5
1957-T3;1,7;-1,4;1,0;nd;1,9;1,8;2,7;1,0;-0,1;1,0;0,4;0,2
1957-T2;0,7;0,9;1,4;nd;-0,9;-3,6;2,9;2,0;1,5;0,7;-0,1;0,1
1957-T1;1,9;4,0;0,7;nd;4,6;6,0;2,6;3,6;5,7;1,5;0,2;0,2
1956-T4;1,5;2,4;1,4;nd;3,4;4,2;1,8;3,3;-0,3;1,7;0,1;-0,4
1956-T3;1,2;4,5;1,8;nd;1,0;0,5;0,6;3,2;1,8;1,5;0,1;-0,4
1956-T2;1,7;9,8;1,6;nd;5,7;9,9;-0,4;3,0;5,1;2,5;-0,2;-0,6
1956-T1;0,8;1,5;2,0;nd;-1,6;-3,3;-0,8;2,5;-6,1;1,2;0,5;-1,0
1955-T4;1,1;4,2;1,6;nd;1,8;2,6;-0,2;2,6;-0,6;1,6;0,1;-0,6
1955-T3;1,5;3,0;1,3;nd;2,5;3,3;1,0;2,5;1,6;1,5;0,1;-0,1
1955-T2;1,4;3,6;2,3;nd;3,8;5,1;2,6;2,3;-0,4;2,3;-0,4;-0,5
1955-T1;1,3;-0,2;1,7;nd;1,0;-1,1;4,1;2,4;0,5;1,3;0,0;0,1
1954-T4;0,7;0,7;0,2;nd;2,0;0,4;5,1;2,6;1,0;0,6;0,1;0,1
1954-T3;1,6;0,5;0,9;nd;4,1;3,8;5,7;3,2;4,1;1,4;-0,3;0,5
1954-T2;1,7;1,4;0,9;nd;4,8;4,9;5,7;3,6;2,6;1,5;0,1;0,2
1954-T1;1,4;3,0;1,2;nd;-0,9;-4,6;5,2;3,6;2,0;0,4;1,1;-0,1
1953-T4;1,6;-1,0;1,1;nd;2,6;1,9;4,1;3,2;5,1;1,2;-0,4;0,8
1953-T3;0,4;0,8;0,5;nd;1,9;1,3;2,8;2,5;-2,9;0,7;0,2;-0,5
1953-T2;1,6;-0,6;1,7;nd;2,1;2,4;1,5;1,6;0,2;1,5;0,0;0,1
1953-T1;1,2;2,6;1,6;nd;3,0;4,5;0,6;1,2;-1,5;1,7;0,2;-0,6
1952-T4;-0,2;-2,2;1,1;nd;-1,5;-3,5;0,7;2,1;-0,3;0,6;-1,1;0,3
1952-T3;1,0;1,0;1,0;nd;0,5;-0,6;1,2;3,6;1,0;0,9;0,1;0,0
1952-T2;-0,5;-4,1;0,6;nd;-2,5;-6,2;2,1;5,4;-0,1;0,1;-1,3;0,6
1952-T1;1,5;-0,7;1,5;nd;0,7;-1,6;3,4;6,9;-1,1;1,4;0,2;-0,1
1951-T4;1,0;3,7;1,0;nd;2,0;0,5;4,9;5,3;-4,4;1,3;1,0;-1,3
1951-T3;1,4;6,2;1,4;nd;1,4;-0,3;6,5;3,0;1,6;1,4;0,7;-0,6
1951-T2;0,8;5,9;0,6;nd;0,1;-1,9;7,7;0,1;-0,6;0,6;1,1;-0,9
1951-T1;0,3;3,2;1,8;nd;5,8;6,9;8,7;-2,3;0,1;2,3;-1,6;-0,4
1950-T4;2,4;6,4;1,3;nd;0,7;-0,4;7,5;-1,7;13,0;1,2;0,0;1,2
1950-T3;2,5;3,5;4,2;nd;2,5;2,5;5,6;-0,6;4,8;3,2;-1,0;0,3
1950-T2;2,5;-2,0;2,2;nd;1,7;1,5;3,3;1,0;3,6;1,9;-0,2;0,8
1950-T1;2,8;9,7;1,6;nd;0,3;-0,6;1,1;3,3;8,1;nd;nd;nd
1949-T4;1,3;-5,6;-0,4;nd;1,1;0,8;0,8;1,9;2,5;nd;nd;nd
1949-T3;1,5;-4,6;2,3;nd;1,3;1,1;1,0;1,9;0,8;nd;nd;nd
1949-T2;0,9;0,0;0,9;nd;1,5;1,3;1,7;1,8;3,1;nd;nd;nd""".replace(
"nd", "NaN"
)
.replace("-T", "-Q")
.replace(",", ".")
)
df = pd.read_csv(data, sep=";")
df = df.set_index("quarter").astype(float)
df["date"] = pd.PeriodIndex(df.index, freq="Q").to_timestamp()
# return get_unemployement()
return df.sort_values("date")
- Enrich data: gmacro.py (raw)
- Direct source: https://www.insee.fr/fr/statistiques/2830547#tableau-figure1
Show columns info
| Column | Info |
|---|---|
| Femmes | |
| Femmes_15-24 | |
| Femmes_25-49 | |
| Femmes_plus_50 | |
| Hommes | |
| Hommes_15-24 | |
| Hommes_25-49 | |
| Hommes_plus_50 | |
| Ensemble | |
| Ensemble_15-24 | |
| Ensemble_25-49 | |
| Ensemble_plus_50 | |
| Longue_duree | |
| date |
Show code
def get_fr_unemployement(self):
data = StringIO(
"""quarter,1975-T1,1975-T2,1975-T3,1975-T4,1976-T1,1976-T2,1976-T3,1976-T4,1977-T1,1977-T2,1977-T3,1977-T4,1978-T1,1978-T2,1978-T3,1978-T4,1979-T1,1979-T2,1979-T3,1979-T4,1980-T1,1980-T2,1980-T3,1980-T4,1981-T1,1981-T2,1981-T3,1981-T4,1982-T1,1982-T2,1982-T3,1982-T4,1983-T1,1983-T2,1983-T3,1983-T4,1984-T1,1984-T2,1984-T3,1984-T4,1985-T1,1985-T2,1985-T3,1985-T4,1986-T1,1986-T2,1986-T3,1986-T4,1987-T1,1987-T2,1987-T3,1987-T4,1988-T1,1988-T2,1988-T3,1988-T4,1989-T1,1989-T2,1989-T3,1989-T4,1990-T1,1990-T2,1990-T3,1990-T4,1991-T1,1991-T2,1991-T3,1991-T4,1992-T1,1992-T2,1992-T3,1992-T4,1993-T1,1993-T2,1993-T3,1993-T4,1994-T1,1994-T2,1994-T3,1994-T4,1995-T1,1995-T2,1995-T3,1995-T4,1996-T1,1996-T2,1996-T3,1996-T4,1997-T1,1997-T2,1997-T3,1997-T4,1998-T1,1998-T2,1998-T3,1998-T4,1999-T1,1999-T2,1999-T3,1999-T4,2000-T1,2000-T2,2000-T3,2000-T4,2001-T1,2001-T2,2001-T3,2001-T4,2002-T1,2002-T2,2002-T3,2002-T4,2003-T1,2003-T2,2003-T3,2003-T4,2004-T1,2004-T2,2004-T3,2004-T4,2005-T1,2005-T2,2005-T3,2005-T4,2006-T1,2006-T2,2006-T3,2006-T4,2007-T1,2007-T2,2007-T3,2007-T4,2008-T1,2008-T2,2008-T3,2008-T4,2009-T1,2009-T2,2009-T3,2009-T4,2010-T1,2010-T2,2010-T3,2010-T4,2011-T1,2011-T2,2011-T3,2011-T4,2012-T1,2012-T2,2012-T3,2012-T4,2013-T1,2013-T2,2013-T3,2013-T4,2014-T1,2014-T2,2014-T3,2014-T4,2015-T1,2015-T2,2015-T3,2015-T4,2016-T1,2016-T2,2016-T3,2016-T4,2017-T1,2017-T2,2017-T3,2017-T4,2018-T1,2018-T2,2018-T3,2018-T4,2019-T1,2019-T2,2019-T3,2019-T4,2020-T1,2020-T2,2020-T3,2020-T4,2021-T1,2021-T2,2021-T3,2021-T4,2022-T1,2022-T2,2022-T3
Femmes,"4,6","4,9","5,2","5,5","5,8","5,9","5,8","5,8","6,1","6,5","6,6","6,5","6,3","6,3","6,6","7,0","7,1","7,2","7,4","7,7","8,0","8,1","8,2","8,4","8,8","9,1","9,3","9,4","9,4","9,5","9,6","9,7","9,6","9,5","9,7","10,0","10,5","10,8","10,9","11,1","11,2","11,1","11,1","10,9","10,8","10,9","11,1","11,2","11,4","11,5","11,3","11,3","11,2","11,0","11,1","11,0","10,8","10,6","10,4","10,3","10,3","10,2","10,1","10,0","10,0","10,1","10,3","10,6","10,8","10,9","11,0","11,1","11,2","11,3","11,6","11,8","12,0","12,1","12,1","11,9","11,8","11,5","11,3","11,4","11,7","11,9","11,9","11,8","11,8","11,8","11,8","11,8","11,6","11,5","11,4","11,4","11,4","11,3","11,1","10,7","10,3","9,9","9,6","9,4","9,2","9,1","8,9","8,8","8,7","8,6","8,7","8,7","9,3","9,4","9,1","9,5","10,0","9,5","9,6","9,5","9,2","9,5","9,9","10,0","10,0","9,6","9,8","8,6","9,0","8,6","8,2","7,8","7,5","7,7","7,8","8,2","8,8","9,3","9,4","9,4","9,4","9,4","9,4","9,8","9,7","9,4","9,5","9,4","9,4","9,8","9,7","10,1","10,2","10,3","10,1","10,1","9,8","9,9","10,1","10,1","9,9","10,0","9,9","9,8","9,7","9,8","10,0","9,9","9,7","9,5","9,4","8,9","9,3","9,1","8,9","8,8","8,7","8,4","8,3","8,1","8,0","6,8","9,0","8,0","7,8","7,9","8,1","7,3","7,3","7,3","7,1"
Femmes_15-24,"9,8","10,4","11,1","11,8","12,8","13,1","12,7","12,6","13,5","14,6","15,0","14,7","14,4","14,5","15,7","16,6","16,9","17,3","17,8","18,7","19,7","20,2","20,4","20,9","21,8","22,6","23,2","23,5","23,5","23,8","24,1","24,1","23,8","23,9","24,5","25,6","27,2","28,2","28,5","28,7","28,4","27,5","27,2","26,6","26,1","26,1","26,2","26,0","25,8","25,5","25,0","24,7","24,5","24,1","23,9","23,1","22,5","22,1","21,5","21,6","21,6","21,4","21,2","21,5","21,8","22,4","23,0","23,2","23,8","23,9","24,4","25,0","25,6","26,3","27,0","27,5","28,2","28,9","29,1","29,0","28,7","27,7","26,8","27,1","27,5","28,1","28,7","29,0","29,1","28,8","28,3","27,7","26,6","26,2","26,2","26,3","26,7","26,4","25,4","23,9","22,4","21,3","20,5","20,1","20,0","19,8","19,6","19,9","20,0","19,7","19,4","20,1","22,8","23,3","21,4","23,3","24,4","24,6","24,9","24,8","24,1","24,6","27,2","26,9","27,6","27,4","28,9","25,0","26,4","24,0","22,0","22,7","21,4","21,9","22,1","23,8","25,9","26,6","26,9","26,4","25,9","28,7","28,4","28,1","29,2","27,2","26,5","26,4","26,2","26,5","28,0","30,7","30,0","30,3","29,2","28,5","27,7","26,5","27,1","27,2","27,1","28,2","27,5","26,8","27,3","28,4","29,3","26,9","25,2","26,6","24,2","23,8","25,4","23,0","22,6","22,9","21,5","20,9","21,0","23,0","22,8","24,1","26,0","21,5","21,3","19,6","19,7","15,0","15,8","17,5","16,5"
Femmes_25-49,"3,3","3,5","3,7","3,9","4,0","4,0","4,0","4,0","4,1","4,3","4,4","4,4","4,3","4,2","4,4","4,5","4,5","4,6","4,7","4,8","4,9","5,0","5,0","5,2","5,5","5,8","5,9","6,0","6,0","6,1","6,2","6,2","6,2","6,1","6,2","6,4","6,7","6,9","7,0","7,2","7,4","7,6","7,7","7,7","7,7","7,9","8,2","8,4","8,7","8,9","8,8","8,9","8,9","8,8","9,1","9,1","9,1","8,9","8,8","8,7","8,6","8,6","8,5","8,5","8,4","8,4","8,7","9,0","9,2","9,4","9,5","9,5","9,6","9,8","10,0","10,3","10,6","10,7","10,7","10,5","10,3","10,2","10,1","10,2","10,5","10,6","10,6","10,5","10,5","10,6","10,7","10,7","10,6","10,5","10,5","10,5","10,5","10,4","10,2","9,9","9,6","9,3","9,1","8,8","8,7","8,5","8,4","8,2","8,0","8,0","8,1","8,1","8,6","8,6","8,4","8,6","8,9","8,6","8,7","8,6","8,4","8,7","8,7","9,0","8,9","8,2","8,5","7,6","7,7","7,6","7,6","6,9","6,6","6,8","6,9","7,3","7,7","8,1","8,3","8,3","8,3","8,0","8,1","8,6","8,4","8,3","8,6","8,4","8,7","8,9","8,8","8,8","9,0","9,2","8,9","9,0","8,6","9,1","9,2","9,3","9,1","9,0","9,0","8,9","8,9","8,7","8,7","9,1","8,9","8,6","9,0","8,1","8,7","8,5","8,2","7,9","7,8","7,6","7,5","7,1","7,1","5,9","8,0","7,1","7,3","7,2","7,4","6,9","6,7","6,6","6,4"
Femmes_plus_50,"2,1","2,2","2,4","2,5","2,6","2,7","2,8","3,0","3,2","3,3","3,3","3,1","2,9","2,9","3,1","3,3","3,5","3,7","3,9","4,2","4,5","4,6","4,6","4,6","4,7","4,7","4,8","4,8","4,8","4,9","5,1","5,1","5,1","5,1","5,1","5,2","5,4","5,5","5,5","5,6","5,7","5,7","5,9","5,8","5,6","5,6","5,6","5,8","6,2","6,4","6,6","6,7","6,6","6,5","6,4","6,4","6,4","6,3","6,2","6,1","6,1","6,0","6,1","6,1","6,3","6,4","6,6","6,8","6,9","6,9","6,8","6,6","6,3","6,2","6,2","6,3","6,2","6,0","6,0","6,0","6,1","6,1","6,0","6,0","6,4","6,5","6,7","6,8","6,9","6,9","6,9","6,9","7,0","7,0","7,0","7,0","6,9","6,9","6,8","6,6","6,4","6,2","6,0","5,7","5,5","5,5","5,5","5,2","5,2","5,4","5,4","5,2","4,8","5,5","5,5","5,9","6,6","5,3","5,3","5,6","5,4","5,0","5,6","5,4","5,3","5,8","5,4","4,8","5,3","4,9","4,5","4,3","4,0","4,4","4,5","4,4","4,8","5,5","5,1","5,9","5,8","5,5","5,6","5,8","5,8","5,5","5,7","5,9","5,4","6,3","5,8","6,1","6,4","6,5","6,6","6,6","6,9","6,6","6,9","6,5","6,2","6,6","6,4","6,5","6,3","6,2","6,8","6,4","6,8","6,3","6,1","6,0","6,0","6,3","6,1","6,5","6,7","6,2","6,1","5,6","5,4","4,0","6,3","5,7","4,8","5,8","5,7","5,5","5,6","5,1","5,3"
Hommes,"2,3","2,6","2,8","2,9","2,9","2,8","2,7","2,7","2,9","3,1","3,3","3,3","3,2","3,3","3,5","3,7","3,8","3,8","3,8","3,8","3,7","3,7","3,7","4,0","4,4","4,7","4,9","5,1","5,2","5,3","5,5","5,6","5,6","5,7","5,8","6,1","6,5","6,9","7,2","7,5","7,6","7,6","7,7","7,7","7,7","7,7","7,7","7,6","7,6","7,6","7,5","7,4","7,4","7,2","7,1","6,8","6,6","6,4","6,3","6,3","6,3","6,3","6,3","6,3","6,3","6,4","6,6","6,8","7,1","7,3","7,6","7,9","8,2","8,6","9,0","9,4","9,6","9,6","9,4","9,1","8,8","8,6","8,5","8,7","9,0","9,3","9,4","9,6","9,7","9,7","9,6","9,5","9,2","9,1","9,0","9,1","9,2","9,1","8,8","8,4","8,0","7,6","7,2","6,9","6,6","6,5","6,7","6,9","7,1","7,2","7,2","7,3","7,6","7,7","7,8","8,1","8,1","8,1","8,2","8,3","8,2","8,2","8,2","8,2","8,4","8,4","8,1","8,1","8,0","7,7","7,7","7,1","6,9","6,9","7,1","7,3","8,4","9,1","9,0","9,6","9,4","9,2","9,1","8,7","8,7","8,8","9,0","9,3","9,6","9,6","9,8","10,2","10,5","10,6","10,4","10,2","10,5","10,4","10,5","10,8","10,7","11,0","10,8","10,7","10,7","10,3","9,8","10,2","9,6","9,6","9,6","9,1","9,2","9,1","9,1","8,7","8,8","8,5","8,5","8,3","7,8","7,4","9,0","8,2","8,5","8,0","7,9","7,5","7,4","7,6","7,6"
Hommes_15-24,"4,8","5,4","5,8","6,0","6,0","5,8","5,6","5,9","6,6","7,2","7,5","7,2","6,8","6,9","7,5","7,9","8,0","8,0","8,0","8,0","8,2","8,2","8,3","9,0","9,8","10,5","11,1","11,5","11,7","12,0","12,5","12,8","12,9","13,1","13,7","14,6","15,8","17,0","17,8","18,2","18,5","18,0","17,7","17,3","16,9","16,9","16,3","15,8","15,5","15,3","15,1","15,2","15,1","14,6","14,0","13,2","12,5","12,2","12,2","12,5","12,9","13,0","13,0","13,1","12,9","13,2","13,3","13,4","13,7","14,1","15,1","16,0","16,8","17,8","18,6","19,1","19,7","20,1","19,3","18,3","17,4","16,6","16,1","17,0","17,6","18,6","19,1","19,6","19,9","19,8","19,4","18,9","18,4","18,3","18,9","19,5","20,2","19,9","18,9","17,5","16,2","15,4","14,8","14,4","14,2","14,2","14,8","15,3","15,6","15,9","16,6","16,9","16,0","17,7","18,4","19,3","19,2","18,9","19,6","19,4","19,5","18,9","19,9","19,6","21,1","20,7","19,1","21,0","19,1","18,8","18,2","17,7","16,7","17,8","19,1","20,2","22,6","24,1","24,2","24,4","23,5","21,7","23,1","20,4","21,1","21,6","21,0","22,0","22,6","23,7","24,4","25,6","25,1","24,1","23,6","22,5","23,3","24,6","24,4","25,3","25,6","24,3","24,8","25,3","25,3","24,0","23,8","23,7","22,7","23,1","22,2","21,2","21,0","21,3","22,1","19,0","20,7","20,1","19,0","20,4","18,8","20,9","20,3","19,1","20,7","19,4","18,8","17,0","17,3","18,5","19,8"
Hommes_25-49,"1,7","1,9","2,1","2,1","2,1","2,0","1,9","1,9","2,0","2,1","2,3","2,3","2,3","2,4","2,5","2,6","2,8","2,8","2,8","2,7","2,6","2,6","2,6","2,9","3,1","3,4","3,6","3,8","3,8","3,9","4,0","4,0","4,0","4,0","4,2","4,4","4,7","5,0","5,2","5,4","5,6","5,6","5,8","5,9","5,9","6,0","6,1","6,1","6,2","6,2","6,1","6,1","6,1","6,0","6,0","5,8","5,6","5,5","5,5","5,4","5,4","5,4","5,4","5,4","5,5","5,6","5,8","6,0","6,2","6,4","6,7","7,0","7,4","7,8","8,2","8,5","8,7","8,7","8,6","8,4","8,2","8,0","8,0","8,1","8,3","8,5","8,6","8,8","8,9","9,0","9,0","8,8","8,5","8,3","8,2","8,2","8,2","8,2","7,9","7,6","7,3","6,9","6,6","6,3","6,0","6,0","6,1","6,3","6,5","6,6","6,4","6,4","7,0","7,0","6,9","7,3","7,3","7,2","7,3","7,7","7,5","7,6","7,4","7,3","7,4","7,5","7,3","6,9","7,2","7,0","7,0","6,4","6,2","5,9","6,1","6,2","7,3","8,0","7,8","8,5","8,4","8,4","8,1","8,0","7,9","8,0","8,3","8,7","8,9","8,9","9,0","9,2","9,6","9,9","9,8","9,7","10,0","9,7","9,9","10,0","9,9","10,2","9,9","9,8","9,9","9,5","8,6","9,2","8,7","8,7","8,6","8,2","8,3","8,2","8,1","8,1","7,8","7,6","7,7","7,4","7,0","6,7","8,7","7,6","7,6","6,9","6,9","6,7","6,5","6,7","6,5"
Hommes_plus_50,"1,8","2,0","2,1","2,2","2,2","2,2","2,2","2,2","2,3","2,5","2,5","2,6","2,7","2,7","2,8","2,9","2,9","3,0","3,0","3,0","3,0","3,0","3,1","3,2","3,4","3,5","3,6","3,7","3,8","3,8","3,9","3,9","3,9","4,0","4,0","4,0","4,1","4,3","4,4","4,5","4,6","4,8","5,1","5,3","5,3","5,4","5,3","5,3","5,4","5,4","5,4","5,4","5,4","5,2","5,1","5,0","5,0","4,8","4,6","4,5","4,4","4,3","4,3","4,4","4,4","4,5","4,8","5,0","5,3","5,5","5,5","5,4","5,3","5,4","5,6","5,8","5,9","5,8","5,8","5,7","5,8","5,8","5,8","5,8","6,1","6,3","6,3","6,3","6,4","6,4","6,4","6,5","6,5","6,6","6,7","6,7","6,7","6,6","6,4","6,1","5,8","5,5","5,1","4,7","4,4","4,3","4,4","4,5","4,6","4,8","4,9","4,9","4,9","4,7","5,2","5,1","5,0","5,5","4,9","4,7","4,6","4,6","4,9","5,4","5,3","5,2","5,0","5,2","5,2","4,6","4,7","4,2","4,3","4,9","4,4","4,3","4,8","5,1","5,5","5,8","5,7","5,5","5,5","5,4","5,2","5,5","5,8","5,8","6,1","5,9","6,1","6,8","6,9","7,0","7,0","6,6","6,9","6,9","6,6","7,5","7,0","7,9","7,6","7,4","7,2","7,2","7,4","7,4","6,9","6,8","7,1","6,8","6,8","6,5","6,3","6,1","6,6","6,3","6,4","6,0","5,5","4,7","5,9","5,7","6,0","6,1","6,0","5,9","5,5","5,2","5,0"
Ensemble,"3,2","3,5","3,8","3,9","4,0","4,0","3,9","4,0","4,2","4,5","4,7","4,6","4,5","4,5","4,8","5,0","5,1","5,2","5,3","5,4","5,5","5,5","5,6","5,8","6,2","6,5","6,8","6,9","7,0","7,1","7,2","7,3","7,3","7,3","7,5","7,8","8,2","8,6","8,8","9,0","9,1","9,1","9,1","9,1","9,0","9,1","9,1","9,2","9,3","9,3","9,2","9,1","9,0","8,9","8,9","8,7","8,4","8,3","8,1","8,1","8,1","8,0","8,0","8,0","7,9","8,1","8,3","8,5","8,7","8,9","9,1","9,3","9,6","9,9","10,2","10,5","10,7","10,7","10,6","10,4","10,2","9,9","9,8","9,9","10,2","10,5","10,5","10,6","10,7","10,7","10,6","10,5","10,3","10,2","10,1","10,2","10,2","10,2","9,9","9,5","9,1","8,7","8,4","8,0","7,8","7,7","7,7","7,8","7,8","7,9","7,9","7,9","8,4","8,5","8,4","8,8","9,0","8,8","8,9","8,9","8,6","8,8","9,0","9,1","9,2","9,0","8,9","8,4","8,5","8,1","8,0","7,5","7,2","7,3","7,4","7,7","8,6","9,2","9,2","9,5","9,4","9,3","9,2","9,2","9,2","9,1","9,2","9,3","9,5","9,7","9,7","10,2","10,3","10,5","10,3","10,1","10,1","10,2","10,3","10,5","10,3","10,5","10,3","10,2","10,2","10,0","9,9","10,0","9,6","9,5","9,5","9,0","9,3","9,1","9,0","8,7","8,7","8,4","8,4","8,2","7,9","7,1","9,0","8,1","8,2","7,9","8,0","7,4","7,3","7,4","7,3"
Ensemble_15-24,"7,0","7,6","8,2","8,6","9,1","9,1","8,9","8,9","9,7","10,6","11,0","10,6","10,2","10,4","11,2","11,9","12,1","12,3","12,5","12,9","13,5","13,6","13,8","14,4","15,3","16,1","16,7","17,0","17,0","17,4","17,8","17,9","17,8","18,0","18,5","19,6","21,0","22,1","22,6","23,0","23,0","22,3","22,0","21,5","21,1","21,1","20,9","20,5","20,2","20,0","19,7","19,6","19,4","19,0","18,5","17,7","17,0","16,7","16,4","16,7","16,9","16,8","16,7","16,9","17,0","17,4","17,7","17,8","18,3","18,5","19,3","20,1","20,8","21,7","22,5","23,0","23,6","24,0","23,7","23,2","22,6","21,7","21,0","21,6","22,1","22,9","23,4","23,8","24,0","23,8","23,4","22,9","22,1","21,9","22,1","22,5","23,0","22,8","21,7","20,4","19,0","18,0","17,4","16,9","16,8","16,7","17,0","17,3","17,5","17,6","17,8","18,3","19,1","20,3","19,8","21,1","21,6","21,5","22,0","21,8","21,5","21,5","23,2","22,9","24,1","23,7","23,5","22,8","22,5","21,2","19,9","19,9","18,8","19,7","20,4","21,8","24,1","25,2","25,5","25,3","24,6","24,9","25,5","23,8","24,8","24,2","23,5","24,0","24,2","25,0","26,0","27,9","27,3","26,9","26,1","25,3","25,3","25,5","25,6","26,2","26,3","26,1","26,1","26,0","26,2","26,0","26,4","25,2","23,9","24,7","23,0","22,4","23,0","22,1","22,3","20,7","21,1","20,5","19,9","21,6","20,6","22,4","22,9","20,2","21,0","19,5","19,2","16,1","16,6","18,0","18,3"
Ensemble_25-49,"2,3","2,5","2,7","2,8","2,8","2,8","2,7","2,7","2,8","3,0","3,1","3,2","3,1","3,1","3,2","3,4","3,5","3,5","3,6","3,6","3,6","3,5","3,6","3,8","4,1","4,4","4,6","4,7","4,8","4,8","4,9","4,9","4,9","4,9","5,0","5,3","5,6","5,8","6,0","6,2","6,4","6,5","6,6","6,7","6,7","6,8","7,0","7,1","7,3","7,4","7,3","7,3","7,3","7,2","7,3","7,3","7,1","7,0","6,9","6,9","6,9","6,8","6,8","6,8","6,8","6,9","7,1","7,3","7,6","7,8","7,9","8,1","8,4","8,7","9,0","9,4","9,6","9,6","9,6","9,4","9,2","9,0","8,9","9,1","9,3","9,5","9,5","9,6","9,7","9,7","9,8","9,7","9,5","9,3","9,2","9,2","9,3","9,2","9,0","8,7","8,4","8,0","7,8","7,5","7,3","7,2","7,2","7,2","7,2","7,2","7,2","7,2","7,8","7,8","7,6","7,9","8,1","7,9","8,0","8,1","7,9","8,1","8,0","8,1","8,1","7,8","7,9","7,3","7,4","7,3","7,3","6,6","6,4","6,4","6,5","6,7","7,5","8,0","8,0","8,4","8,3","8,2","8,1","8,3","8,2","8,1","8,4","8,6","8,8","8,9","8,9","9,0","9,3","9,5","9,4","9,4","9,3","9,4","9,6","9,7","9,5","9,6","9,5","9,3","9,4","9,1","8,7","9,2","8,8","8,6","8,8","8,1","8,5","8,4","8,2","8,0","7,8","7,6","7,6","7,3","7,1","6,3","8,3","7,4","7,4","7,0","7,1","6,8","6,6","6,6","6,5"
Ensemble_plus_50,"1,9","2,1","2,2","2,3","2,4","2,4","2,4","2,5","2,7","2,8","2,8","2,8","2,8","2,8","2,9","3,0","3,2","3,3","3,4","3,5","3,6","3,6","3,7","3,8","3,9","4,0","4,1","4,1","4,2","4,3","4,4","4,4","4,4","4,4","4,4","4,5","4,6","4,8","4,9","5,0","5,0","5,2","5,4","5,5","5,4","5,5","5,4","5,5","5,7","5,8","5,9","5,9","5,9","5,8","5,7","5,6","5,6","5,4","5,3","5,2","5,1","5,1","5,1","5,1","5,2","5,4","5,6","5,8","6,0","6,1","6,0","5,9","5,7","5,7","5,8","6,0","6,0","5,9","5,9","5,9","5,9","5,9","5,9","5,9","6,2","6,4","6,5","6,5","6,6","6,6","6,7","6,7","6,7","6,8","6,8","6,8","6,8","6,8","6,6","6,3","6,1","5,8","5,5","5,2","4,9","4,9","4,9","4,8","4,9","5,1","5,1","5,0","4,8","5,1","5,3","5,5","5,7","5,4","5,1","5,2","5,0","4,8","5,2","5,4","5,3","5,5","5,2","5,0","5,3","4,7","4,6","4,2","4,1","4,7","4,5","4,3","4,8","5,3","5,3","5,8","5,7","5,5","5,5","5,6","5,5","5,5","5,8","5,8","5,8","6,1","6,0","6,5","6,7","6,8","6,8","6,6","6,9","6,7","6,8","7,0","6,6","7,2","7,0","6,9","6,7","6,7","7,1","6,9","6,8","6,5","6,6","6,4","6,4","6,4","6,2","6,3","6,6","6,2","6,3","5,8","5,5","4,4","6,1","5,7","5,4","5,9","5,8","5,7","5,5","5,2","5,1"
Longue_duree,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,nd,"2,2","2,2","2,2","2,4","2,3","2,3","2,3","2,5","2,4","2,5","2,5","2,3","2,4","2,5","2,5","2,4","2,4","2,1","2,1","1,9","1,9","1,9","1,8","1,7","1,7","2,0","2,1","2,3","2,5","2,4","2,4","2,4","2,4","2,5","2,6","2,6","2,6","2,6","2,6","2,7","2,8","2,8","2,8","3,0","3,0","3,1","3,1","3,1","3,1","3,1","3,1","3,1","3,2","3,2","3,1","3,1","3,0","3,0","3,0","2,7","2,6","2,6","2,5","2,5","2,4","2,3","2,2","2,2","2,0","1,4","2,2","2,1","2,5","2,3","2,4","2,2","2,2","2,1","2,0"
""".replace(
"nd", "NaN"
).replace(
"-T", "-Q"
)
)
df = pd.read_csv(data, sep=",", quotechar='"').set_index("quarter").T
for c in df.columns:
df[c] = df[c].astype(str).str.replace(",", ".").astype(float)
df["date"] = pd.PeriodIndex(df.index, freq="Q").to_timestamp()
return df.sort_values("date")
- Enrich data: gmacro.py (raw)
- Direct source: https://www.statsmodels.org/0.6.1/datasets/generated/macrodata.html
Show columns info
| Column | Info |
|---|---|
| year | 1959q1 - 2009q3 |
| quarter | 1-4 |
| realgdp | Real gross domestic product (Bil. of chained 2005$, seasonally adjusted annual rate) |
| realcons | Real personal consumption expenditures (Bil. of chained 2005$, seasonally adjusted annual rate) |
| realinv | Real gross private domestic investment (Bil. of chained 2005$, seasonally adjusted annual rate) |
| realgovt | Real federal consumption expenditures & gross investment(Bil. of chained 2005 US$, seasonally adjusted annual rate) |
| realdpi | Real private disposable income (Bil. of chained 2005 US$, seasonally adjusted annual rate) |
| cpi | End of the quarter consumer price index for all urban consumers: all items (1982-84 = 100, seasonally adjusted). |
| m1 | End of the quarter M1 nominal money stock (Seasonally adjusted) |
| tbilrate | Quarterly monthly average of the monthly 3-month treasury bill: secondary market rate |
| unemp | Seasonally adjusted unemployment rate (%) |
| pop | End of the quarter total population: all ages incl. armed forces over seas |
| infl | Inflation rate (ln(cpi_{t}/cpi_{t-1}) * 400) |
| realint | Real interest rate (tbilrate - infl) |
Show code
def get_us_gdp(self, simplify=True):
import statsmodels.api as sm # Statistical models
us_okun = sm.datasets.macrodata.load_pandas().data
if not simplify:
return us_okun
us_okun["diff(gdp)"] = 100 * us_okun["realgdp"].diff() / us_okun["realgdp"]
us_okun["diff(unemployement)"] = us_okun["unemp"].diff()
us_okun["yquarter"] = us_okun["year"].astype(str).str[:4] + "-Q" + us_okun["quarter"].astype(str).str[0]
us_okun = us_okun[["yquarter", "diff(gdp)", "diff(unemployement)"]]
us_okun = us_okun.dropna()
us_okun["quarter"] = pd.PeriodIndex(us_okun["yquarter"], freq="Q").to_timestamp()
return us_okun.set_index("quarter")
Show columns info
| Column | Info |
|---|---|
| yquarter | |
| diff(gdp) | |
| diff(unemployement) |
Show code
def get_fr_gdp(self, simplify=True):
gdp = get_fr_qgdp(self).reset_index()
une = get_fr_unemployement(self).reset_index()
fr_okun = gdp.merge(une, how="inner", left_on="quarter", right_on="index")
if not simplify:
return fr_okun
if simplify:
fr_okun = fr_okun.rename(columns={"gdp": "diff(gdp)", "quarter": "yquarter"})
fr_okun["diff(unemployement)"] = fr_okun["Ensemble"].diff()
fr_okun = fr_okun[["yquarter", "diff(gdp)", "diff(unemployement)"]]
fr_okun = fr_okun.dropna()
fr_okun["quarter"] = pd.PeriodIndex(fr_okun["yquarter"], freq="Q").to_timestamp()
return fr_okun.set_index("quarter")
- Raw data: DataForFigure2.1WHR2023.xls (raw🔄)
- Direct source: https://worldhappiness.report/data/
Show columns info
| Column | Info |
|---|---|
| country | |
| Ladder score | |
| Logged GDP per capita | |
| Social support | |
| Healthy life expectancy | |
| Freedom to make life choices | |
| Generosity | |
| Perceptions of corruption |
Show code
def get_happiness(self, **data_info):
df = self.read_raw_data(self.raw_data)
return df.sort_values("Ladder score", ascending=False)[
[
"Country name",
"Ladder score",
"Logged GDP per capita",
"Social support",
"Healthy life expectancy",
"Freedom to make life choices",
"Generosity",
"Perceptions of corruption",
]
].rename(columns={"Country name": "country"})
- Raw data: DataForFigure2.1WHR2023.xls (raw🔄)
- Direct source: https://worldhappiness.report/data/
Show columns info
| Column | Info |
|---|---|
| pop_est | |
| continent | |
| name | |
| iso_a3 | |
| gdp_md_est | |
| geometry | |
| Ladder score | |
| Logged GDP per capita | |
| Social support | |
| Healthy life expectancy | |
| Freedom to make life choices | |
| Generosity | |
| Perceptions of corruption |
Show code
def get_mappoverty(self, **kwargs):
return get_mapgeneric(get_happiness(self, **kwargs))
- Raw data: prices-split-adjusted.csv (raw)
- Direct source: https://github.com/kyi3081/stock-analysis
Show columns info
| Column | Info |
|---|---|
| date | |
| symbol | |
| open | |
| close | |
| low | |
| high | |
| volume |
- Raw data: fundamentals.csv (raw)
- Direct source: https://github.com/kyi3081/stock-analysis
Show columns info
| Column | Info |
|---|---|
| Unnamed: 0 | |
| Ticker Symbol | |
| Period Ending | |
| Accounts Payable | |
| Accounts Receivable | |
| Add'l income/expense items | |
| After Tax ROE | |
| Capital Expenditures | |
| Capital Surplus | |
| Cash Ratio | |
| Cash and Cash Equivalents | |
| Changes in Inventories | |
| Common Stocks | |
| Cost of Revenue | |
| Current Ratio | |
| Deferred Asset Charges | |
| Deferred Liability Charges | |
| Depreciation | |
| Earnings Before Interest and Tax | |
| Earnings Before Tax | |
| Effect of Exchange Rate | |
| Equity Earnings/Loss Unconsolidated Subsidiary | |
| Fixed Assets | |
| Goodwill | |
| Gross Margin | |
| Gross Profit | |
| Income Tax | |
| Intangible Assets | |
| Interest Expense | |
| Inventory | |
| Investments | |
| Liabilities | |
| Long-Term Debt | |
| Long-Term Investments | |
| Minority Interest | |
| Misc. Stocks | |
| Net Borrowings | |
| Net Cash Flow | |
| Net Cash Flow-Operating | |
| Net Cash Flows-Financing | |
| Net Cash Flows-Investing | |
| Net Income | |
| Net Income Adjustments | |
| Net Income Applicable to Common Shareholders | |
| Net Income-Cont. Operations | |
| Net Receivables | |
| Non-Recurring Items | |
| Operating Income | |
| Operating Margin | |
| Other Assets | |
| Other Current Assets | |
| Other Current Liabilities | |
| Other Equity | |
| Other Financing Activities | |
| Other Investing Activities | |
| Other Liabilities | |
| Other Operating Activities | |
| Other Operating Items | |
| Pre-Tax Margin | |
| Pre-Tax ROE | |
| Profit Margin | |
| Quick Ratio | |
| Research and Development | |
| Retained Earnings | |
| Sale and Purchase of Stock | |
| Sales, General and Admin. | |
| Short-Term Debt / Current Portion of Long-Term Debt | |
| Short-Term Investments | |
| Total Assets | |
| Total Current Assets | |
| Total Current Liabilities | |
| Total Equity | |
| Total Liabilities | |
| Total Liabilities & Equity | |
| Total Revenue | |
| Treasury Stock | |
| For Year | |
| Earnings Per Share | |
| Estimated Shares Outstanding |
- Raw data: securities.csv (raw)
- Direct source: https://github.com/kyi3081/stock-analysis
Show columns info
| Column | Info |
|---|---|
| Ticker symbol | |
| Security | |
| SEC filings | |
| GICS Sector | |
| GICS Sub Industry | |
| Address of Headquarters | |
| Date first added | |
| CIK |
- Raw data: continent.tsv (raw)
Show columns info
| Column | Info |
|---|---|
| index | |
| country | |
| iso | |
| m49 | |
| region1 | |
| region2 | |
| continent |
- Raw data: corruption.csv (raw)
Show columns info
| Column | Info |
|---|---|
| country | |
| annual_income | |
| corruption_index |
- Raw data: cost_of_living.csv (raw)
Show columns info
| Column | Info |
|---|---|
| country | |
| cost_index | |
| monthly_income | |
| purchasing_power_index |
- Raw data: richest_countries.csv (raw)
Show columns info
| Column | Info |
|---|---|
| country | |
| gdp_per_capita |
- Raw data: tourism.csv (raw)
Show columns info
| Column | Info |
|---|---|
| country | |
| tourists_in_millions | |
| receipts_in_billions | |
| receipts_per_tourist | |
| percentage_of_gdp |
- Raw data: unemployment.csv (raw)
Show columns info
| Column | Info |
|---|---|
| country | |
| unemployment_rate |
Show columns info
| Column | Info |
|---|---|
| wage | |
| experience | |
| studies |
- Raw data: [Données septembre partie 1.xlsx](https://huggingface.co/datasets/guydegnol/bulkhours/blob/main/Données septembre partie 1.xlsx) ([raw](https://huggingface.co/datasets/guydegnol/bulkhours/raw/main/Données septembre partie 1.xlsx)🤗)
- Raw data: Données_RA2022_P2.xlsx (raw🤗)
- Raw data: [Données complémentaires partie 2 RA 2022.xlsx](https://huggingface.co/datasets/guydegnol/bulkhours/blob/main/Données complémentaires partie 2 RA 2022.xlsx) ([raw](https://huggingface.co/datasets/guydegnol/bulkhours/raw/main/Données complémentaires partie 2 RA 2022.xlsx)🤗)
- Raw data: [Données septembre 2022 - partie 3.xlsx](https://huggingface.co/datasets/guydegnol/bulkhours/blob/main/Données septembre 2022 - partie 3.xlsx) ([raw](https://huggingface.co/datasets/guydegnol/bulkhours/raw/main/Données septembre 2022 - partie 3.xlsx)🤗)
- Raw data: Données_RA2022_P4.xlsx (raw🤗)
- Raw data: [Données septembre 2022 - partie 5.xlsx](https://huggingface.co/datasets/guydegnol/bulkhours/blob/main/Données septembre 2022 - partie 5.xlsx) ([raw](https://huggingface.co/datasets/guydegnol/bulkhours/raw/main/Données septembre 2022 - partie 5.xlsx)🤗)
- Raw data: APPLE_DownloadFPrepStatementQuarter.tsv (raw🤗)
- Enrich data: trading.py (raw)
Show columns info
| Column | Info |
|---|---|
| revenue | |
| grossProfit | |
| ebitda | |
| netIncome | |
| eps |
Show code
def get_apple(self):
apple = self.read_raw_data(self.raw_data).iloc[-4 * 5 :]
apple.index = pd.to_datetime(apple.index)
apple = apple[["date", "revenue", "grossProfit", "ebitda", "netIncome", "eps"]].set_index("date")
apple["revenue"] = apple["revenue"].astype(float)
apple.index = pd.date_range("2017-12-30", periods=20, freq="Q")
return apple
- Enrich data: france.py (raw)
- Direct source: https://www.insee.fr/fr/statistiques/2415121#tableau-figure1
Show columns info
| Column | Info |
|---|---|
| active | |
| retired | |
| rapport |
Show code
def get_retraites(self):
return (
pd.read_csv(
StringIO(
"""
year active retired rapport
2020 28,2 16,9 1,67
2019 28,5 16,7 1,71
2018 28,2 16,5 1,71
2017 27,9 16,3 1,72
2016 27,6 16,1 1,71
2015 27,4 16,0 1,71
2014 27,3 15,8 1,73
2013 27,2 15,6 1,74
2012 27,1 15,3 1,77
2011 27,0 15,3 1,77
2010 26,8 15,1 1,78
2009 26,8 14,7 1,82
""".replace(
",", "."
)
),
sep="\t",
)
.set_index("year")
.astype(float)
.sort_index()
)
- Enrich data: france.py (raw)
- Direct source: https://www.insee.fr/fr/statistiques/6436313#tableau-figure2
Show columns info
| Column | Info |
|---|---|
| index | |
| income | |
| population | |
| xmin | |
| xmax | |
| is_valid |
Show code
def get_income(self):
data = StringIO(
"""income population
Moins de 1_200 583943
De 1_200 à 1_300 613_321
De 1_300 à 1_400 835_135
De 1_400 à 1_500 969_172
De 1_500 à 1_600 1_052_630
De 1_600 à 1_700 1_008_034
De 1_700 à 1_800 939_538
De 1_800 à 1_900 863_042
De 1_900 à 2_000 782_314
De 2_000 à 2_100 706_339
De 2_100 à 2_200 630_132
De 2_200 à 2_300 563_387
De 2_300 à 2_400 504_240
De 2_400 à 2_500 452_167
De 2_500 à 2_600 407_908
De 2_600 à 2_700 365_648
De 2_700 à 2_800 329_810
De 2_800 à 2_900 294_230
De 2_900 à 3_000 265_925
De 3_000 à 3_100 241_899
De 3_100 à 3_200 218_832
De 3_200 à 3_300 198_266
De 3_300 à 3_400 180_386
De 3_400 à 3_500 164_164
De 3_500 à 3_600 150_218
De 3_600 à 3_700 136_878
De 3_700 à 3_800 124_602
De 3_800 à 3_900 114_322
De 3_900 à 4_000 106_638
De 4_000 à 4_100 97_332
De 4_100 à 4_200 89_173
De 4_200 à 4_300 82_839
De 4_300 à 4_400 76_130
De 4_400 à 4_500 69_887
De 4_500 à 4_600 64_863
De 4_600 à 4_700 60_466
De 4_700 à 4_800 55_998
De 4_800 à 4_900 52_101
De 4_900 à 5_000 48_438
De 5_000 à 5_100 44_831
De 5_100 à 5_200 41_854
De 5_200 à 5_300 38_848
De 5_300 à 5_400 36_480
De 5_400 à 5_500 34_092
De 5_500 à 5_600 31_841
De 5_600 à 5_700 29_948
De 5_700 à 5_800 27_840
De 5_800 à 5_900 26_335
De 5_900 à 6_000 25_270
De 6_000 à 6_100 23_380
De 6_100 à 6_200 21_912
De 6_200 à 6_300 20_313
De 6_300 à 6_400 19_320
De 6_400 à 6_500 18_286
De 6_500 à 6_600 17_333
De 6_600 à 6_700 16_394
De 6_700 à 6_800 15_519
De 6_800 à 6_900 14_700
De 6_900 à 7_000 13_549
De 7_000 à 7_100 13_210
De 7_100 à 7_200 12_278
De 7_200 à 7_300 11_829
De 7_300 à 7_400 11_186
De 7_400 à 7_500 10_567
De 7_500 à 7_600 10_063
De 7_600 à 7_700 9_698
De 7_700 à 7_800 9_178
De 7_800 à 7_900 8_974
De 7_900 à 8_000 8_689
De 8_000 à 8_100 8_170
De 8_100 à 8_200 7_697
De 8_200 à 8_300 7_431
De 8_300 à 8_400 7_057
De 8_400 à 8_500 6_674
De 8_500 à 8_600 6_410
De 8_600 à 8_700 6_138
De 8_700 à 8_800 5_772
De 8_800 à 8_900 5_585
De 8_900 à 9_000 5_408
Plus de 9_000 183_314
"""
)
df = pd.read_csv(data, sep="\t").reset_index()
df["population"] = df["population"].str.replace(" ", "").astype(float)
df["xvalue"] = (
df["income"]
.str.replace("De ", "")
.str.replace("Moins de", "1_100 à")
.str.replace("Plus de 9_000", "9_000 à 9_100")
)
df["xvalue"] = df["xvalue"].str.replace(" ", "").str.split("à")
df["xmin"] = df["xvalue"].apply(lambda x: float(x[0]))
df["xmax"] = df["xvalue"].apply(lambda x: float(x[1]))
df["xvalue"] = 0.5 * (df["xmin"] + df["xmax"])
df["is_valid"] = ~df.index.isin([0, len(df) - 1])
return df.set_index("xvalue")
- Enrich data: france.py (raw)
- Direct source: https://www.insee.fr/fr/statistiques/6047743?sommaire=6047805
Show columns info
| Column | Info |
|---|---|
| Revenu annuel Femmes moyen | Revenu annuel Femmes moyen |
| Revenu annuel Hommes moyen | Revenu annuel Hommes moyen |
| Revenu annuel Femmes moyen Écart relatif (en %) | Revenu annuel Femmes moyen Écart relatif (en %) |
| Salaire annuel Femmes moyen EQTP | Salaire annuel Femmes moyen EQTP |
| Salaire annuel Hommes moyen EQTP | Salaire annuel Hommes moyen EQTP |
| Salaire annuel Femmes moyen EQTP Écart relatif (en % EQTP) | Salaire annuel Femmes moyen EQTP Écart relatif (en % EQTP) |
Show code
def get_salaires(self):
data = StringIO(
"""
categorie revenu_femme revenu_homme revenu_diff salaire_ajusté_femme salaire_ajusté_homme salaire_ajusté_diff
Age: Moins de 25 ans 7 360 9 110 19,2 17 930 19 210 6,7
Age: 25-39 ans 18 220 22 610 19,4 24 460 27 660 11,6
Age: 40-49 ans 22 830 29 710 23,1 28 190 34 270 17,7
Age: 50-54 ans 23 070 31 340 26,4 28 280 35 740 20,9
Age: 55 ans ou plus 21 410 29 430 27,2 29 520 38 740 23,8
Diplôme: Pas de diplôme 12 450 17 400 28,5 19 590 23 260 15,8
Diplôme: inférieur au baccalauréat 15 180 20 510 26,0 21 460 25 650 16,3
Diplôme: Baccalauréat à bac+2 20 480 26 560 22,9 25 570 31 000 17,5
Diplôme: Bac+3 ou plus 30 790 44 410 30,7 36 190 50 140 27,8
SocioPro: Cadres 36 040 45 370 20,6 42 820 52 950 19,1
SocioPro: Professions intermédiaires 21 770 26 040 16,4 27 230 30 690 11,3
SocioPro: Employés 13 900 15 310 9,2 20 860 22 850 8,7
SocioPro: Ouvriers 11 960 17 200 30,5 19 580 22 930 14,6
Secteur: privé et entreprises publiques 18 010 24 260 25,7 26 330 31 580 16,6
Secteur: Fonction publique 21 330 25 290 15,7 26 640 31 090 14,3
Secteur: Ensemble 18 970 24 420 22,3 26 430 31 510 16,1
"""
)
df = pd.read_csv(data, sep="\t").set_index("categorie")
for c in df.columns:
df[c] = df[c].str.replace(" ", "").str.replace(",", ".").astype(float)
return df
- Enrich data: france.py (raw)
- Direct source: https://www.insee.fr/fr/statistiques/6047743?sommaire=6047805
Show columns info
| Column | Info |
|---|---|
| delta_rev_legacy | écart relatif du revenu salarial moyen homme/femme |
| delta_rev | écart relatif (en %) du revenu salarial moyen.1 |
| delta_rev_eqtp_legacy | écart relatif du salaire moyen en EQTP |
| delta_rev_eqtp | écart relatif du salaire moyen en EQTP |
| delta_vol_eqtp | écart relatif du volume de travail en EQTP moyen |
Show code
def get_histsalaires(self):
data = StringIO(
"""
Année écart relatif du revenu salarial moyen écart relatif du revenu salarial moyen écart relatif du salaire moyen en EQTP écart relatif du salaire moyen en EQTP écart relatif du volume de travail en EQTP moyen
1995 27,4 18,5 10,9
1996 27,8 18,8 11,1
1997 27,6 18,5 11,2
1998 27,8 18,3 11,4
1999 27,9 17,9 11,9
2000 28,2 18,6 11,6
2001 28,2 18,8 11,3
2002 27,8 18,5 11,3
2003 27,6 18,5 11,1
2004 27,3 18,4 10,9
2005 27,1 18,3 10,8
2006 26,9 18,2 10,6
2007 26,8 18,5 10,2
2008 27,1 18,7 10,3
2009 26,1 18,3 9,6
2010 25,5 18,2 9,0
2011 25,6 18,2 9,2
2012 25,3 25,5 18,2 18,5 8,8
2013 24,8 18,2 8,2
2014 24,1 17,9 7,8
2015 23,7 17,8 7,2
2016 23,3 17,0 7,7
2017 22,9 16,7 7,7
2018 22,8 16,6 7,6
2019 22,3 16,1 7,6
"""
)
df = pd.read_csv(data, sep="\t").set_index("Année")
for c in df.columns:
df[c] = df[c].str.replace(" ", "").str.replace(",", ".").astype(float)
return df
- Raw data: pyramide.tsv (raw)
- Direct source: https://www.insee.fr/fr/statistiques/2381472#tableau-figure1
Show columns info
| Column | Info |
|---|---|
| Année de naissance | |
| Age révolu | |
| Nombre de femmes | |
| Nombre d'hommes | |
| Ensemble |
- Direct source: https://www.nbp.pl/publikacje/materialy_i_studia/226_en.pdf (table 2)
Show columns info
| Column | Info |
|---|---|
| Mean | |
| Minimum | |
| Maximum | |
| Variance | |
| Coefficient | |
| of | |
| variation |
Show code
def get_stats(self):
return pd.read_csv(
StringIO(
"""Country Mean Minimum Maximum Variance Coefficient of variation
Austria 16.196 7.330 46.400 64.591 0.4962
Belgium 18.741 10.010 42.140 58.243 0.4072
Bulgaria 5.349 2.340 13.050 7.771 0.5212
Czech Republic 8.060 3.700 20.060 14.024 0.4646
Denmark 19.528 11.750 35.650 29.825 0.2797
Estonia 7.552 3.160 17.840 11.965 0.4580
Finland 16.068 8.990 35.360 38.538 0.3863
France 15.106 8.080 40.320 43.449 0.4364
Germany 17.764 7.520 40.000 67.286 0.4618
Hungary 8.055 3.760 19.730 15.993 0.4965
Ireland 19.313 10.180 40.300 58.440 0.3958
Italy 16.040 7.690 42.550 80.968 0.5610
Latvia 6.238 3.160 13.160 5.978 0.3920
Netherlands 16.471 7.230 32.420 34.222 0.3552
Poland 8.821 4.080 22.620 20.516 0.5135
Portugal 11.422 4.150 31.150 54.673 0.6474
Romania 5.903 2.450 15.250 12.481 0.5985
Slovakia 7.703 3.790 18.970 13.479 0.4766
Slovenia 12.708 5.760 33.910 48.510 0.5481
Spain 14.489 7.390 35.940 44.362 0.4597
Sweden 14.651 9.550 28.050 18.079 0.2902
United Kingdom 16.368 7.590 36.390 53.933 0.4487
"""
),
sep=" ",
).set_index("Country")
- Enrich data: mincer.py (raw)
- Direct source: https://www.nbp.pl/publikacje/materialy_i_studia/226_en.pdf (table 3)
Show columns info
| Column | Info |
|---|---|
| alpha_0i | |
| alpha_1i | |
| alpha_2i | |
| alpha_3i | |
| alpha_0i_e | |
| alpha_1i_e | |
| alpha_2i_e | |
| alpha_3i_e |
Show code
def get_params(self):
return pd.read_csv(
StringIO(
"""Country alpha_0i alpha_1i alpha_2i alpha_3i alpha_0i_e alpha_1i_e alpha_2i_e alpha_3i_e
Austria 0.804517 0.331677 0.426552 -0.03883 0.218682 0.021472 0.113136 0.01396
Belgium 1.297771 0.285186 0.335843 -0.02938 0.142724 0.014014 0.073839 0.009111
Bulgaria 0.322091 0.416255 0.113577 -0.01772 0.228792 0.022465 0.118367 0.014605
Czech_Republic 0.520228 0.346856 0.289626 -0.03328 0.229066 0.022491 0.118508 0.014622
Denmark 1.545782 0.174215 0.437635 -0.04545 0.140934 0.013838 0.072913 0.008997
Estonia 0.737041 0.352713 0.205628 -0.03139 0.238293 0.023397 0.123282 0.015211
Finland 1.352042 0.258832 0.319167 -0.03292 0.177835 0.017461 0.092004 0.011352
France 1.259472 0.292803 0.224716 -0.01589 0.159000 0.015612 0.08226 0.01015
Germany 0.694024 0.339402 0.54815 -0.05546 0.180304 0.017704 0.093281 0.01151
Hungary 0.770683 0.375923 0.068702 -0.0028 0.204335 0.020063 0.105714 0.013044
Ireland 0.992552 0.26368 0.571297 -0.05996 0.171045 0.016794 0.088491 0.010919
Italy 0.652806 0.340295 0.448101 -0.03797 0.227626 0.02235 0.117763 0.014531
Latvia 0.856984 0.320107 0.07136 -0.01262 0.182072 0.017877 0.094196 0.011623
Netherlands 0.851423 0.248588 0.571987 -0.05838 0.136289 0.013382 0.07051 0.0087
Poland 0.395191 0.383528 0.325102 -0.0356 0.227625 0.02235 0.117763 0.01453
Portugal -0.04775 0.46068 0.463982 -0.04216 0.262584 0.025783 0.135849 0.016762
Romania 0.128356 0.453002 0.158483 -0.01838 0.269076 0.02642 0.139208 0.017177
Slovakia 0.628832 0.341852 0.223241 -0.02638 0.238073 0.023376 0.123168 0.015197
Slovenia 0.764813 0.385382 0.233162 -0.01591 0.190327 0.018688 0.098467 0.01215
Spain 1.181748 0.317969 0.161371 -0.0043 0.187973 0.018457 0.097249 0.011999
Sweden 1.471135 0.19044 0.324012 -0.03441 0.14431 0.014169 0.07466 0.009212
United_Kingdom 0.750457 0.34039 0.540786 -0.06146 0.186361 0.018298 0.096415 0.011896"""
),
sep=" ",
).set_index("Country")
- Enrich data: statsdata.py (raw)
Show code
def get_scipy_distributions_list(self):
import scipy as sp
return [d for d in dir(sp.stats._continuous_distns) if not d in ["levy_stable", "studentized_range"]]
- Enrich data: statsdata.py (raw)
- Direct source: https://www.statsmodels.org/stable/index.html
Show columns info
| Column | Info |
|---|---|
| oil |
Show code
def get_oil(self):
return pd.Series(
[
446.6565,
454.4733,
455.663,
423.6322,
456.2713,
440.5881,
425.3325,
485.1494,
506.0482,
526.792,
514.2689,
494.211,
],
pd.date_range(start="1996", end="2008", freq="A"),
).to_frame("oil")
- Enrich data: statsdata.py (raw)
- Direct source: https://www.statsmodels.org/stable/index.html
Show columns info
| Column | Info |
|---|---|
| air |
Show code
def get_air(self):
air = pd.Series(
[
17.5534,
21.86,
23.8866,
26.9293,
26.8885,
28.8314,
30.0751,
30.9535,
30.1857,
31.5797,
32.5776,
33.4774,
39.0216,
41.3864,
41.5966,
],
pd.date_range(start="1990", end="2005", freq="A"),
)
return air.to_frame("air")
- Enrich data: statsdata.py (raw)
- Direct source: https://www.statsmodels.org/stable/index.html
Show columns info
| Column | Info |
|---|---|
| livestock2 |
Show code
def get_livestock2(self):
index = pd.date_range(start="1970", end="2001", freq="A")
return pd.Series(
[
263.9177,
268.3072,
260.6626,
266.6394,
277.5158,
283.834,
290.309,
292.4742,
300.8307,
309.2867,
318.3311,
329.3724,
338.884,
339.2441,
328.6006,
314.2554,
314.4597,
321.4138,
329.7893,
346.3852,
352.2979,
348.3705,
417.5629,
417.1236,
417.7495,
412.2339,
411.9468,
394.6971,
401.4993,
408.2705,
414.2428,
],
index,
).to_frame("livestock2")
Forecasting livestock, sheep in Asia: comparing forecasting performance of non-seasonal methods. (3)
- Enrich data: statsdata.py (raw)
- Direct source: https://www.statsmodels.org/stable/index.html
Show columns info
| Column | Info |
|---|---|
| livestock3 |
Show code
def get_livestock3(self):
data = [407.9979, 403.4608, 413.8249, 428.105, 445.3387, 452.9942, 455.7402]
return pd.Series(data, pd.date_range(start="2001", end="2008", freq="A")).to_frame("livestock3")
- Enrich data: statsdata.py (raw)
Show columns info
| Column | Info |
|---|---|
| aust |
Show code
def get_aust(self):
data = [
41.7275,
24.0418,
32.3281,
37.3287,
46.2132,
29.3463,
36.4829,
42.9777,
48.9015,
31.1802,
37.7179,
40.4202,
51.2069,
31.8872,
40.9783,
43.7725,
55.5586,
33.8509,
42.0764,
45.6423,
59.7668,
35.1919,
44.3197,
47.9137,
]
return pd.Series(data, pd.date_range(start="2005", end="2010-Q4", freq="QS-OCT")).to_frame("aust")
- Raw data: AirPassengers.csv (raw🤗)
- Enrich data: statsdata.py (raw)
Show columns info
| Column | Info |
|---|---|
| #Passengers | |
| is_test |
Show code
def get_air_passengers(self):
df = self.read_raw_data(self.raw_data).set_index("Month")
df.index = pd.to_datetime(df.index)
df.index.freq = "MS"
df["is_test"] = df.index >= df.index[120]
return df
- Enrich data: statsdata.py (raw)
- Direct source: https://fred.stlouisfed.org/series/ATNHPIUS26420Q
Show code
def get_hhousing(self):
from pandas_datareader import data as pdr # To get data
data = pdr.get_data_fred("HOUSTNSA", "1959-01-01") # , "2019-06-01")
housing = data.HOUSTNSA.pct_change().dropna()
# Scale by 100 to get percentages
housing = 100 * housing.asfreq("MS")
return housing.to_frame()
- Raw data: fe_equipment_failure_data_1.csv (raw)
Show columns info
| Column | Info |
|---|---|
| ID | |
| DATE | |
| MANUFACTURER | |
| S15 | |
| EQUIPMENT_FAILURE |
- Raw data: fe_equipment_failure_data_2.csv (raw)
Show columns info
| Column | Info |
|---|---|
| ID | |
| DATE | |
| MANUFACTURER | |
| S15 | |
| EQUIPMENT_FAILURE |
- Raw data: equipment_failure_data_1.csv (raw)
Show columns info
| Column | Info |
|---|---|
| ID | |
| DATE | |
| REGION_CLUSTER | |
| MAINTENANCE_VENDOR | |
| MANUFACTURER | |
| WELL_GROUP | |
| S15 | |
| S17 | |
| S13 | |
| S5 | |
| S16 | |
| S19 | |
| S18 | |
| EQUIPMENT_FAILURE | |
| S8 | |
| AGE_OF_EQUIPMENT |
- Raw data: equipment_failure_data_2.csv (raw)
Show columns info
| Column | Info |
|---|---|
| ID | |
| DATE | |
| REGION_CLUSTER | |
| MAINTENANCE_VENDOR | |
| MANUFACTURER | |
| WELL_GROUP | |
| S15 | |
| S17 | |
| S13 | |
| S5 | |
| S16 | |
| S19 | |
| S18 | |
| EQUIPMENT_FAILURE | |
| S8 | |
| AGE_OF_EQUIPMENT |
- Reference site: https://en.wikipedia.org/wiki/Transistor_count
Show columns info
| Column | Info |
|---|---|
| processor | |
| count | |
| date | |
| designer | |
| manufacturer | |
| engraving_scale | |
| area | |
| density | |
| ref |
Show code
def get_dfistor_count(self):
columns = ["processor", "count", "date", "designer", "manufacturer", "engraving_scale", "area", "density", "ref"]
df = flops.get_table_from_wiki(wpage="Transistor_count", in_table="Voodoo Graphics", columns=columns)
return df.iloc[:-1]
- Reference site: https://en.wikipedia.org/wiki/Transistor_count
Show columns info
| Column | Info |
|---|---|
| year | |
| scale |
Show code
def get_engraving_scale(self):
return flops.get_engraving_scale(verbose=True)
- Reference site: https://en.wikipedia.org/wiki/FLOPS
Show columns info
| Column | Info |
|---|---|
| Name | |
| Unit | |
| Value |
Show code
def get_FLOPS(self):
return flops.get_table_from_wiki("FLOPS", "Computer performance")
- Reference site: https://en.wikipedia.org/wiki/FLOPS
Show columns info
| Column | Info |
|---|---|
| date | |
| un_costs | |
| costs | |
| platform | |
| comments |
Show code
def get_gpus(self):
return flops.get_table_from_wiki("FLOPS", "NVIDIA", columns=["date", "un_costs", "costs", "platform", "comments"])
- Reference site: https://en.wikipedia.org/wiki/FLOPS
Show code
def get_cpus(self):
columns = ["processor", "count", "date", "designer", "engraving_scale", "area", "density"]
df = flops.get_table_from_wiki(
wpage="Transistor_count", in_table="20-bit, 6-chip, 28 chips total", columns=columns
)
df = df.iloc[:-1]
df["date"] = df["date"].str.replace("March ", "").str.replace("November ", "")
df["date"] = df["date"].str.replace("March ", "").str.replace("November ", "")
df["date"] = df["date"].str.split("[").str[0].astype(int)
df["count"] = df["count"].str.replace(",", "")
df["count"] = df["count"].str.split("[").str[0]
df["count"] = df["count"].str.split("+").str[0]
df["count"] = df["count"].str.split(" ").str[0]
df["count"] = pd.to_numeric(df["count"], errors="coerce")
df["engraving_scale"] = df["engraving_scale"].str.split("[").str[0]
df["engraving_scale"] = df["engraving_scale"].str.replace(",", "")
df["engraving_scale"] = df["engraving_scale"].str.split("(").str[0]
df["engraving_scale"] = df["engraving_scale"].str.replace("\xa0nm", "")
df["engraving_scale"] = df["engraving_scale"].str.replace("nm", "")
df["engraving_scale"] = pd.to_numeric(df["engraving_scale"], errors="coerce")
l = [3, 4, 6, 8, 15, 23, 50, 80, 150, 300, 500, 800, 1000, 3000, 5000, 10000]
df["engraving_scale2"] = pd.cut(df["engraving_scale"], bins=l, include_lowest=True)
df["engraving_scale3"] = df["engraving_scale2"].map(
dict(zip(df["engraving_scale2"].unique(), range(len(df["engraving_scale2"].unique()))))
)
df["engraving_scale3"] = df["engraving_scale3"].fillna(1).astype(float)
return df
- Reference site: https://en.wikipedia.org/wiki/FLOPS
Show columns info
| Column | Info |
|---|---|
| ('Date', 'Date') | |
| ('Approximate USD per GFLOPS', 'Unadjusted') | |
| ('Approximate USD per GFLOPS', '2022[69]') | |
| ('Platform providing the lowest cost per GFLOPS', 'Platform providing the lowest cost per GFLOPS') | |
| ('Comments', 'Comments') |
Show code
def get_costs(self):
return flops.get_table_from_wiki("FLOPS", "Approximate USD per GFLOPS")#, columns=["date", "un_costs", "costs", "platform", "comments"])
- Raw data: green500_top_202306.xlsx (raw🤗)
- Reference site: https://www.top500.org/lists/green500/2023/06/
Show columns info
| Column | Info |
|---|---|
| Rank | |
| TOP500 Rank | |
| Name | |
| Computer | |
| Site | |
| Manufacturer | |
| Country | |
| Year | |
| Segment | |
| Total Cores | |
| Accelerator/Co-Processor Cores | |
| Rmax [TFlop/s] | |
| Rpeak [TFlop/s] | |
| Power (kW) | |
| Power Source | |
| Energy Efficiency [GFlops/Watts] | |
| Power Source.1 | |
| Power Quality Level | |
| Optimized Run (HPL) | |
| Optimized Run (Peak Power) | |
| Memory | |
| Architecture | |
| Processor | |
| Processor Technology | |
| Processor Speed (MHz) | |
| Operating System | |
| OS Family | |
| Accelerator/Co-Processor | |
| Cores per Socket | |
| Processor Generation | |
| System Model | |
| System Family | |
| Interconnect Family | |
| Interconnect | |
| Continent | |
| Site ID | |
| System ID |
- Raw data: TOP500_202306.xlsx (raw🤗)
- Reference site: https://www.top500.org/lists/top500/2023/06/
Show columns info
| Column | Info |
|---|---|
| Rank | |
| Previous Rank | |
| First Appearance | |
| First Rank | |
| Name | |
| Computer | |
| Site | |
| Manufacturer | |
| Country | |
| Year | |
| Segment | |
| Total Cores | |
| Accelerator/Co-Processor Cores | |
| Rmax [TFlop/s] | |
| Rpeak [TFlop/s] | |
| Nmax | |
| Nhalf | |
| HPCG [TFlop/s] | |
| Power (kW) | |
| Power Source | |
| Energy Efficiency [GFlops/Watts] | |
| Memory | |
| Architecture | |
| Processor | |
| Processor Technology | |
| Processor Speed (MHz) | |
| Operating System | |
| OS Family | |
| Accelerator/Co-Processor | |
| Cores per Socket | |
| Processor Generation | |
| System Model | |
| System Family | |
| Interconnect Family | |
| Interconnect | |
| Continent | |
| Site ID | |
| System ID |
- Raw data: supercomputer-power-flops.csv (raw🤗)
- Direct source: https://ourworldindata.org/grapher/supercomputer-power-flops
Show columns info
> The number of floating-point operations per second (GigaFLOPS) by the fastest supercomputer in any given year| Column | Info |
|---|---|
| Entity | The number of GigaFLOP/S by the fastest supercomputer in any given year |
-
Celsius en Kelvin:
$273.15°K=0°C$
from bulkhours import constants as bkc
bkc.c2k := 273.15 # K.C-1
bkc.kelvin := 273.15 # K.C-1-
Celerité de la lumière:
$c = 3 \cdot 10^{5}m\cdot s^{-1}$
from bulkhours import constants as bkc
bkc.c := 3e+05 # m.s-1
bkc.vitesse_lumiere := 3e+05 # m.s-1-
Distance parcourue par la lumière en 1an:
$al = 9.461 \cdot 10^{15}m$
from bulkhours import constants as bkc
bkc.al := 9.461e+15 # m
bkc.annee_lumiere := 9.461e+15 # m-
Une Unité astrononique faisant un angle d'une seconde d'arc (ancienne déf.):
$1pc \equiv \frac{180\cdot60\cdot60}{\pi} = 3.086 \cdot 10^{16}m = 3.26al$
from bulkhours import constants as bkc
bkc.parsec := 3.086e+16 # m.pc-1-
Une Unité astrononique faisant un angle d'une seconde d'arc (ancienne déf.):
$1kpc \equiv \frac{1000\cdot180\cdot60\cdot60}{\pi}$
from bulkhours import constants as bkc
bkc.kparsec := 3.086e+19 # m.kpc-1-
Constante de la gravitation:
$G = 6.67 \cdot 10^{-11}N\cdot m^2\cdot kg^{-2}$ [6.6743e-11N.m2.kg-2]
from bulkhours import constants as bkc
bkc.G := 6.67e-11 # N.m2.kg-2-
Acceleration standard de la gravitation:
$g = 9.8m\cdot s^{-2}$ [9.80665m.s-2]
from bulkhours import constants as bkc
bkc.g := 9.8 # m.s-2-
Constante de Planck:
$h = 6.626 \cdot 10^{-34}J\cdot s$ [6.62607015e-34J.s]
from bulkhours import constants as bkc
bkc.h := 6.626e-34 # J.s-
Constante de Planck réduite:
$\bar{h} = \frac{h}{2\pi}$
from bulkhours import constants as bkc
bkc.hbar := 1.055e-34 # J.s-
Nombre d'Avogadro:
$N_\mathcal{A} = 6.02 \cdot 10^{23}mol-1$ (Carbone:$12g\Leftrightarrow 1mol$ )
from bulkhours import constants as bkc
bkc.N_A := 6.02e+23 # mol-1
bkc.A := 6.02e+23 # mol-1-
Constante de Stefan-Boltzmann:
$\sigma = 5.67 \cdot 10^{-8} W\cdot m^{-2}\cdot K^{-4}$
from bulkhours import constants as bkc
bkc.sigma := 5.67e-08 # W.m-2.K-4
bkc.stefan := 5.67e-08 # W.m-2.K-4-
Constante de Wien:
$\lambda_{\text{max}} \cdot T = 0.003m\cdot K$ [0.002897771955m.K]
from bulkhours import constants as bkc
bkc.Wien := 0.003 # m.K
bkc.wien := 0.003 # m.K
bkc.lambda_max := 0.003 # m.K-
Constante de Rydberg:
$R_H({\text{Hydrogene}}) = 1.1 \cdot 10^{7}m-1$
from bulkhours import constants as bkc
bkc.Rydberg := 1.1e+07 # m-1
bkc.rydberg := 1.1e+07 # m-1
bkc.R_H := 1.1e+07 # m-1-
Energie cinetique e sous 1Volt:
$\mathrm{eV} = 1.6 \cdot 10^{-19}J\cdot eV^{-1}$ [1.602176634e-19J.eV-1]
from bulkhours import constants as bkc
bkc.eV := 1.6e-19 # J.eV-1
bkc.ev := 1.6e-19 # J.eV-1-
Masse electron:
$m_e = 9.109 \cdot 10^{-31}kg$ [9.1093837015e-31kg]
from bulkhours import constants as bkc
bkc.m_e := 9.109e-31 # kg-
Rayon de Bohr:
$a = 5.3 \cdot 10^{-11} m$
from bulkhours import constants as bkc
bkc.r_bohr := 5.300e-11 # m
bkc.a := 5.300e-11 # m-
Masse proton:
$m_p = 1.673 \cdot 10^{-27}kg$ [1.67262192369e-27kg]
from bulkhours import constants as bkc
bkc.m_p := 1.673e-27 # kg-
Masse proton:
$m_p = 1.007276uma$ ($1uma \equiv \frac{M(^{12}C)}{12}$ ) [1.007276466621uma]
from bulkhours import constants as bkc
bkc.m_puma := 1.007276 # uma-
Masse neutron:
$m_n = 1.008663uma$ ($1uma \equiv \frac{M(^{12}C)}{12}$ ) [1.00866491595uma]
from bulkhours import constants as bkc
bkc.m_numa := 1.008663 # uma-
Unité de Masse Atomique:
$m_{nuc} = 1.660 \cdot 10^{-27}kg\cdot uma^{-1}$ ($1uma \equiv \frac{M(^{12}C)}{12}$ ) [1.6605390666e-27kg.uma-1]
from bulkhours import constants as bkc
bkc.uma := 1.660e-27 # kg.uma-1-
Unité de Masse Atomique (MeV):
$m_{nuc} = 931.500MeV\cdot uma^{-1}$ ($1uma \equiv \frac{M(^{12}C)}{12}$ )
from bulkhours import constants as bkc
bkc.uma_mev := 931.500 # MeV.uma-1-
Masse:
$M_{\mathrm{mercure}} = 3.301 \cdot 10^{23}kg$
from bulkhours import constants as bkc
bkc.M_mercure := 3.301e+23 # kg-
Distance au soleil:
$d_{\odot \mathrm{mercure}} = 0.38ua$
from bulkhours import constants as bkc
bkc.d_mercure := 0.38 # ua-
Rayon:
$R_{\mathrm{mercure}} = 2439km$
from bulkhours import constants as bkc
bkc.R_mercure := 2439 # km-
Albedo:
$A_{\mathrm{mercure}} = 0.09$
from bulkhours import constants as bkc
bkc.A_mercure := 0.09 # Sans unité (entre 0 et 1)-
Effet de serre:
$S_{\mathrm{mercure}} = 0$
from bulkhours import constants as bkc
bkc.S_mercure := 0 # Sans unité (entre 0 et 1)-
Temperature moyenne:
$T_{\mathrm{mercure}} = 167.0°C$
from bulkhours import constants as bkc
bkc.T_mercure := 167.0 # °C-
Masse:
$M_{\mathrm{venus}} = 4.867 \cdot 10^{24}kg$
from bulkhours import constants as bkc
bkc.M_venus := 4.867e+24 # kg-
Distance au soleil:
$d_{\odot \mathrm{venus}} = 0.72ua$
from bulkhours import constants as bkc
bkc.d_venus := 0.72 # ua-
Rayon:
$R_{\mathrm{venus}} = 3390km$
from bulkhours import constants as bkc
bkc.R_venus := 3390 # km-
Albedo:
$A_{\mathrm{venus}} = 0.77$
from bulkhours import constants as bkc
bkc.A_venus := 0.77 # Sans unité (entre 0 et 1)-
Effet de serre:
$S_{\mathrm{venus}} = 0.991$
from bulkhours import constants as bkc
bkc.S_venus := 0.991 # Sans unité (entre 0 et 1)-
Temperature moyenne:
$T_{\mathrm{venus}} = 464.0°C$
from bulkhours import constants as bkc
bkc.T_venus := 464.0 # °C-
Masse:
$M_{\mathrm{terre}} = 5.972 \cdot 10^{24}kg$
from bulkhours import constants as bkc
bkc.M_terre := 5.972e+24 # kg-
Distance au soleil:
$d_{\odot \mathrm{terre}} = 1.00ua$
from bulkhours import constants as bkc
bkc.d_terre := 1.00 # ua-
Rayon:
$R_{\mathrm{terre}} = 6371km$
from bulkhours import constants as bkc
bkc.R_terre := 6371 # km-
Albedo:
$A_{\mathrm{terre}} = 0.30$
from bulkhours import constants as bkc
bkc.A_terre := 0.30 # Sans unité (entre 0 et 1)-
Effet de serre:
$S_{\mathrm{terre}} = 0.394$
from bulkhours import constants as bkc
bkc.S_terre := 0.394 # Sans unité (entre 0 et 1)-
Temperature moyenne:
$T_{\mathrm{terre}} = 15.0°C$
from bulkhours import constants as bkc
bkc.T_terre := 15.0 # °C-
Distance au soleil:
$d_{\odot \mathrm{terre}} = 1ua = 1.500 \cdot 10^{11}m$ [149597870700.0m]
from bulkhours import constants as bkc
bkc.d_terre_solm := 1.500e+11 # m
bkc.d_terresoleil := 1.500e+11 # m-
Masse:
$M_{\mathrm{mars}} = 6.417 \cdot 10^{23}kg$
from bulkhours import constants as bkc
bkc.M_mars := 6.417e+23 # kg-
Distance au soleil:
$d_{\odot \mathrm{mars}} = 1.52ua$
from bulkhours import constants as bkc
bkc.d_mars := 1.52 # ua-
Rayon:
$R_{\mathrm{mars}} = 3390km$
from bulkhours import constants as bkc
bkc.R_mars := 3390 # km-
Albedo:
$A_{\mathrm{mars}} = 0.25$
from bulkhours import constants as bkc
bkc.A_mars := 0.25 # Sans unité (entre 0 et 1)-
Effet de serre:
$S_{\mathrm{mars}} = 0.010$
from bulkhours import constants as bkc
bkc.S_mars := 0.010 # Sans unité (entre 0 et 1)-
Temperature moyenne:
$T_{\mathrm{mars}} = -62.8°C$
from bulkhours import constants as bkc
bkc.T_mars := -62.8 # °C-
Masse:
$M_{\odot} = 1.988 \cdot 10^{30}kg$
from bulkhours import constants as bkc
bkc.M_soleil := 1.988e+30 # kg-
Rayon:
$R_{\odot} = 7 \cdot 10^{5}km$
from bulkhours import constants as bkc
bkc.R_soleil := 7e+05 # km-
Luminosité:
$L_{\odot} = 3.83 \cdot 10^{26}W$
from bulkhours import constants as bkc
bkc.L_soleil := 3.83e+26 # W
bkc.L_sol := 3.83e+26 # W
bkc.L_sun := 3.83e+26 # W-
Temperature moyenne:
$T_{\odot} = 5800.0°C$
from bulkhours import constants as bkc
bkc.T_soleil := 5800.0 # °C-
Masse:
$M_{\mathrm{lune}} = 7.350 \cdot 10^{22}kg$
from bulkhours import constants as bkc
bkc.M_lune := 7.350e+22 # kg-
Distance au soleil:
$d_{\odot \mathrm{lune}} = 1.00ua$
from bulkhours import constants as bkc
bkc.d_lune := 1.00 # ua-
Rayon:
$R_{\mathrm{lune}} = 6371km$
from bulkhours import constants as bkc
bkc.R_lune := 6371 # km-
Albedo:
$A_{\mathrm{lune}} = 0.11$
from bulkhours import constants as bkc
bkc.A_lune := 0.11 # Sans unité (entre 0 et 1)-
Distance à la lune:
$d_{\mathrm{terre} \mathrm{lune}} = 3.844 \cdot 10^{8}m$
from bulkhours import constants as bkc
bkc.d_terre_lune := 3.844e+08 # m-
Perimètre d'un cercle de rayon 1/2🙂:
$pi = 3.141593$
from bulkhours import constants as bkc
bkc.pi := 3.141593 # - Raw data: observed-solar-cycle-indices.json (raw🔄)
- Enrich data: statsdata.py (raw)
- Direct source: https://www.swpc.noaa.gov/products/solar-cycle-progression
- Reference site: https://services.swpc.noaa.gov/json/solar-cycle/observed-solar-cycle-indices.json
Show columns info
| Column | Info |
|---|---|
| ssn | SunSpot Number (aka Wolf Number or Zürich number): number of sunspots and groups of sunspots present on the surface of the Sun (source: S.I.D.C. Brussels International Sunspot Number) |
| smoothed_ssn | smoothed ssn (source: S.I.D.C. Brussels International Sunspot Number) |
| observed_swpc_ssn | mean monthly SWPC/SWO ssn (source: SWPC Space Weather Operations) |
| smoothed_swpc_ssn | smoothed ssn (source: SWPC Space Weather Operations) |
| f10.7 | mean monthly flux values (sfu) (source: Penticton, B.C. 10.7cm radio) |
| smoothed_f10.7 | smoothed radio flux values (source: Penticton, B.C. 10.7cm radio) |
Show code
def get_sunspots(self):
dta = pd.read_json(self.raw_data)
sunspots = dta.set_index("time-tag")
sunspots.index = pd.to_datetime(sunspots.index)
sunspots.index.freq = sunspots.index.inferred_freq
sunspots = sunspots.resample("MS").mean()
sunspots = sunspots.resample("Q").mean().iloc[-400:]
return sunspots
- Raw data: vaccinations.csv (raw)
- Direct source: https://ourworldindata.org/coronavirus
- Reference site: https://covid19.who.int/data
Show columns info
> https://github.com/owid/covid-19-data/tree/master/public/data/| Column | Info |
|---|---|
| location | |
| iso_code | |
| date | |
| total_vaccinations | |
| people_vaccinated | |
| people_fully_vaccinated | |
| total_boosters | |
| daily_vaccinations_raw | |
| daily_vaccinations | |
| total_vaccinations_per_hundred | |
| people_vaccinated_per_hundred | |
| people_fully_vaccinated_per_hundred | |
| total_boosters_per_hundred | |
| daily_vaccinations_per_million | |
| daily_people_vaccinated | |
| daily_people_vaccinated_per_hundred |
- Raw data: prostate.tsv (raw)
- Direct source: https://hastie.su.domains/ElemStatLearn/data.html
Show columns info
| Column | Info |
|---|---|
| lcavol | |
| lweight | |
| lbph | |
| svi | |
| lcp | |
| gleason | |
| pgg45 | |
| [outcome] |
- Raw data: owid-covid-data.csv (raw🔄)
- Direct source: https://ourworldindata.org/coronavirus
- Reference site: https://covid19.who.int/data
Show columns info
> https://github.com/owid/covid-19-data/tree/master/public/data/| Column | Info |
|---|---|
| iso_code | |
| continent | |
| location | |
| date | |
| total_cases | |
| new_cases | |
| new_cases_smoothed | |
| total_deaths | |
| new_deaths | |
| new_deaths_smoothed | |
| total_cases_per_million | |
| new_cases_per_million | |
| new_cases_smoothed_per_million | |
| total_deaths_per_million | |
| new_deaths_per_million | |
| new_deaths_smoothed_per_million | |
| reproduction_rate | |
| icu_patients | |
| icu_patients_per_million | |
| hosp_patients | |
| hosp_patients_per_million | |
| weekly_icu_admissions | |
| weekly_icu_admissions_per_million | |
| weekly_hosp_admissions | |
| weekly_hosp_admissions_per_million | |
| total_tests | |
| new_tests | |
| total_tests_per_thousand | |
| new_tests_per_thousand | |
| new_tests_smoothed | |
| new_tests_smoothed_per_thousand | |
| positive_rate | |
| tests_per_case | |
| tests_units | |
| total_vaccinations | |
| people_vaccinated | |
| people_fully_vaccinated | |
| total_boosters | |
| new_vaccinations | |
| new_vaccinations_smoothed | |
| total_vaccinations_per_hundred | |
| people_vaccinated_per_hundred | |
| people_fully_vaccinated_per_hundred | |
| total_boosters_per_hundred | |
| new_vaccinations_smoothed_per_million | |
| new_people_vaccinated_smoothed | |
| new_people_vaccinated_smoothed_per_hundred | |
| stringency_index | |
| population_density | |
| median_age | |
| aged_65_older | |
| aged_70_older | |
| gdp_per_capita | |
| extreme_poverty | |
| cardiovasc_death_rate | |
| diabetes_prevalence | |
| female_smokers | |
| male_smokers | |
| handwashing_facilities | |
| hospital_beds_per_thousand | |
| life_expectancy | |
| human_development_index | |
| population | |
| excess_mortality_cumulative_absolute | |
| excess_mortality_cumulative | |
| excess_mortality | |
| excess_mortality_cumulative_per_million |
- Raw data: owid-co2-data.csv (raw)
- Enrich data: world.py (raw)
Show columns info
> https://github.com/owid/co2-data/blob/master/owid-co2-codebook.csv| Column | Info |
|---|---|
| country | |
| year | |
| iso_code | |
| population | |
| gdp | |
| cement_co2 | |
| cement_co2_per_capita | |
| co2 | |
| co2_growth_abs | |
| co2_growth_prct | |
| co2_including_luc | |
| co2_including_luc_growth_abs | |
| co2_including_luc_growth_prct | |
| co2_including_luc_per_capita | |
| co2_including_luc_per_gdp | |
| co2_including_luc_per_unit_energy | |
| co2_per_capita | |
| co2_per_gdp | |
| co2_per_unit_energy | |
| coal_co2 | |
| coal_co2_per_capita | |
| consumption_co2 | |
| consumption_co2_per_capita | |
| consumption_co2_per_gdp | |
| cumulative_cement_co2 | |
| cumulative_co2 | |
| cumulative_co2_including_luc | |
| cumulative_coal_co2 | |
| cumulative_flaring_co2 | |
| cumulative_gas_co2 | |
| cumulative_luc_co2 | |
| cumulative_oil_co2 | |
| cumulative_other_co2 | |
| energy_per_capita | |
| energy_per_gdp | |
| flaring_co2 | |
| flaring_co2_per_capita | |
| gas_co2 | |
| gas_co2_per_capita | |
| ghg_excluding_lucf_per_capita | |
| ghg_per_capita | |
| land_use_change_co2 | |
| land_use_change_co2_per_capita | |
| methane | |
| methane_per_capita | |
| nitrous_oxide | |
| nitrous_oxide_per_capita | |
| oil_co2 | |
| oil_co2_per_capita | |
| other_co2_per_capita | |
| other_industry_co2 | |
| primary_energy_consumption | |
| share_global_cement_co2 | |
| share_global_co2 | |
| share_global_co2_including_luc | |
| share_global_coal_co2 | |
| share_global_cumulative_cement_co2 | |
| share_global_cumulative_co2 | |
| share_global_cumulative_co2_including_luc | |
| share_global_cumulative_coal_co2 | |
| share_global_cumulative_flaring_co2 | |
| share_global_cumulative_gas_co2 | |
| share_global_cumulative_luc_co2 | |
| share_global_cumulative_oil_co2 | |
| share_global_cumulative_other_co2 | |
| share_global_flaring_co2 | |
| share_global_gas_co2 | |
| share_global_luc_co2 | |
| share_global_oil_co2 | |
| share_global_other_co2 | |
| share_of_temperature_change_from_ghg | |
| temperature_change_from_ch4 | |
| temperature_change_from_co2 | |
| temperature_change_from_ghg | |
| temperature_change_from_n2o | |
| total_ghg | |
| total_ghg_excluding_lucf | |
| trade_co2 | |
| trade_co2_share |
- Raw data: owid-co2-data.csv (raw)
- Enrich data: world.py (raw)
Show columns info
> https://github.com/owid/co2-data/blob/master/owid-co2-codebook.csv| Column | Info |
|---|---|
| country | |
| year | |
| iso_code | |
| population | |
| gdp | |
| cement_co2 | |
| cement_co2_per_capita | |
| co2 | |
| co2_growth_abs | |
| co2_growth_prct | |
| co2_including_luc | |
| co2_including_luc_growth_abs | |
| co2_including_luc_growth_prct | |
| co2_including_luc_per_capita | |
| co2_including_luc_per_gdp | |
| co2_including_luc_per_unit_energy | |
| co2_per_capita | |
| co2_per_gdp | |
| co2_per_unit_energy | |
| coal_co2 | |
| coal_co2_per_capita | |
| consumption_co2 | |
| consumption_co2_per_capita | |
| consumption_co2_per_gdp | |
| cumulative_cement_co2 | |
| cumulative_co2 | |
| cumulative_co2_including_luc | |
| cumulative_coal_co2 | |
| cumulative_flaring_co2 | |
| cumulative_gas_co2 | |
| cumulative_luc_co2 | |
| cumulative_oil_co2 | |
| cumulative_other_co2 | |
| energy_per_capita | |
| energy_per_gdp | |
| flaring_co2 | |
| flaring_co2_per_capita | |
| gas_co2 | |
| gas_co2_per_capita | |
| ghg_excluding_lucf_per_capita | |
| ghg_per_capita | |
| land_use_change_co2 | |
| land_use_change_co2_per_capita | |
| methane | |
| methane_per_capita | |
| nitrous_oxide | |
| nitrous_oxide_per_capita | |
| oil_co2 | |
| oil_co2_per_capita | |
| other_co2_per_capita | |
| other_industry_co2 | |
| primary_energy_consumption | |
| share_global_cement_co2 | |
| share_global_co2 | |
| share_global_co2_including_luc | |
| share_global_coal_co2 | |
| share_global_cumulative_cement_co2 | |
| share_global_cumulative_co2 | |
| share_global_cumulative_co2_including_luc | |
| share_global_cumulative_coal_co2 | |
| share_global_cumulative_flaring_co2 | |
| share_global_cumulative_gas_co2 | |
| share_global_cumulative_luc_co2 | |
| share_global_cumulative_oil_co2 | |
| share_global_cumulative_other_co2 | |
| share_global_flaring_co2 | |
| share_global_gas_co2 | |
| share_global_luc_co2 | |
| share_global_oil_co2 | |
| share_global_other_co2 | |
| share_of_temperature_change_from_ghg | |
| temperature_change_from_ch4 | |
| temperature_change_from_co2 | |
| temperature_change_from_ghg | |
| temperature_change_from_n2o | |
| total_ghg | |
| total_ghg_excluding_lucf | |
| trade_co2 | |
| trade_co2_share |
- Raw data: carbon-footprint-travel-mode.csv (raw🤗)
- Direct source: https://ourworldindata.org/grapher/carbon-footprint-travel-mode
Show columns info
| Column | Info |
|---|---|
| Entity | |
| Code | |
| Year | |
| GHG emissions (gCO2e/km) |
- Raw data: climate-change.csv (raw)
- Enrich data: world.py (raw)
- Direct source: https://ourworldindata.org/atmospheric-concentrations
Show columns info
| Column | Info |
|---|---|
| country | |
| year | |
| CO2 concentrations | |
| CH4 concentrations | |
| N2O concentrations | |
| February | |
| September | |
| Mass U.S. glaciers | |
| CSIRO | |
| IAP | |
| MRIJMA | |
| NOAA | |
| Snow cover | |
| Sea surface temp | |
| Sea surface temp (lower-bound) | |
| Sea surface temp (upper-bound) | |
| IAP.1 | |
| NOAA.1 | |
| MRIJMA.1 | |
| February.1 | |
| September.1 |
Show code
def get_concentrations(self, zone="World", **data_info):
df = self.read_raw_data(self.raw_data)
df = df.rename(columns={"Entity": "country", "Year": "year"})
if zone is not None:
df = df.query(f"country == '{zone}'")
return df
- Raw data: climate-change.csv (raw)
- Enrich data: world.py (raw)
- Direct source: https://ourworldindata.org/atmospheric-concentrations
Show columns info
| Column | Info |
|---|---|
| pop_est | |
| continent | |
| name | |
| iso_a3 | |
| gdp_md_est | |
| geometry | |
| year | |
| CO2 concentrations | |
| CH4 concentrations | |
| N2O concentrations | |
| February | |
| September | |
| Mass U.S. glaciers | |
| CSIRO | |
| IAP | |
| MRIJMA | |
| NOAA | |
| Snow cover | |
| Sea surface temp | |
| Sea surface temp (lower-bound) | |
| Sea surface temp (upper-bound) | |
| IAP.1 | |
| NOAA.1 | |
| MRIJMA.1 | |
| February.1 | |
| September.1 |
Show code
def get_mapconcentrations(self, **kwargs):
return get_mapgeneric(get_concentrations(self, **kwargs))
- Raw data: Rapport-OFCE-HCC-2020.pdf (raw🔄)
- Raw data: train_catvnoncat.h5 (raw🤗)
- Raw data: test_catvnoncat.h5 (raw🤗)