Skip to content

Data Flow

github-actions edited this page Oct 22, 2025 · 1 revision

Data Flow

Complete User Journey

This document traces how data flows through the Muze application from initial page load to playlist generation.

Flow Diagram

┌─────────────┐
│ User visits │
│     /       │
└──────┬──────┘
       │
       ▼
┌─────────────────────────┐
│ Flask: index()          │
│ Returns musi.html       │
│ songs = []              │
└──────┬──────────────────┘
       │
       ▼
┌─────────────────────────┐
│ Browser renders page    │
│ - Requests webcam       │
│ - Initializes canvas    │
│ - Starts video stream   │
└──────┬──────────────────┘
       │
       │ (5 second delay)
       ▼
┌─────────────────────────┐
│ snapshot() triggered    │
│ - Capture video frame   │
│ - Convert to base64     │
└──────┬──────────────────┘
       │
       │ AJAX POST
       ▼
┌─────────────────────────┐
│ Flask: /hook            │
│ - Decode image          │
│ - Save to disk          │
└──────┬──────────────────┘
       │
       ▼
┌─────────────────────────┐
│ get_emotion()           │
│ - Read image file       │
│ - Call Algorithmia API  │
└──────┬──────────────────┘
       │
       │ API Response
       ▼
┌─────────────────────────┐
│ Emotion Analysis        │
│ - Parse confidence      │
│ - Select max emotion    │
│ - Store color code      │
└──────┬──────────────────┘
       │
       ▼
┌─────────────────────────┐
│ get_playlist()          │
│ - Load song database    │
│ - Map emotion→clusters  │
│ - Random selection      │
└──────┬──────────────────┘
       │
       │ Playlist array
       ▼
┌─────────────────────────┐
│ Flask: render template  │
│ songs = [21 items]      │
└──────┬──────────────────┘
       │
       │ HTML Response
       ▼
┌─────────────────────────┐
│ Browser: Page reload    │
│ - Parse song list       │
│ - Start audio playback  │
└──────┬──────────────────┘
       │
       │ (Every song end)
       ▼
┌─────────────────────────┐
│ Audio 'ended' event     │
│ - Load next song        │
│ - Update display        │
└──────┬──────────────────┘
       │
       │ (After 20 songs)
       ▼
┌─────────────────────────┐
│ snapshot() again        │
│ (Cycle repeats)         │
└─────────────────────────┘

Detailed Step-by-Step Flow

Phase 1: Initialization

Step 1: Page Load

User → Browser → Flask Server
GET http://localhost:5000/

Server Action:

@app.route('/')
def index():
    return flask.render_template("musi.html", songs=[])

Data Sent:

  • HTML template
  • Empty songs array: []
  • Static resources (CSS, JS, jQuery)

Step 2: Webcam Initialization

Browser → User's Webcam
navigator.getUserMedia()

Client Action:

navigator.getUserMedia(
    { video: true, audio: false },
    function(stream) {
        video.src = window.URL.createObjectURL(stream);
        webcamStream = stream;
    },
    function(err) { console.log(err); }
);

Data Flow:

  • Browser requests camera permission
  • User grants access
  • Video stream → <video> element
  • Stream stored in webcamStream variable

Phase 2: Emotion Detection

Step 3: Snapshot Capture (After 5 seconds)

Video Stream → Canvas → Base64 String

Client Action:

function snapshot() {
    ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
    var dataURL = canvas.toDataURL("image/png");
    // dataURL format: "..."
}

Data Transformation:

  1. Video frame (raw pixels) → Canvas (400×350)
  2. Canvas → PNG image
  3. PNG → Base64 string
  4. String prefixed with data:image/png;base64,

Step 4: Image Upload

Browser → Flask Server
POST /hook

Client Action:

$.ajax({
    type: "POST",
    url: "/hook",
    data: { imageBase64: dataURL }
});

Data Sent:

  • imageBase64: Full base64 string (~50-100KB)

Server Action:

@app.route('/hook', methods=['POST'])
def get_image():
    image_b64 = request.values['imageBase64']
    image_data = re.sub('^data:image/.+;base64,', '', image_b64)
    image_PIL = Image.open(BytesIO(base64.b64decode(image_data)))
    image_PIL.save("snapshots/pic.png", mode='RGB')

Data Transformation:

  1. Base64 string → Remove prefix
  2. Base64 → Binary data
  3. Binary → PIL Image object
  4. PIL Image → PNG file on disk

File Created: snapshots/pic.png (400×350 RGB)


Step 5: Emotion Recognition

Flask Server → Algorithmia API

Server Action:

def get_emotion():
    input = bytearray(open("snapshots/pic.png", "rb").read())
    client = Algorithmia.client('api-key')
    algo = client.algo('deeplearning/EmotionRecognitionCNNMBP/1.0.1')
    op = algo.pipe(input).result

Data Sent to API:

  • Binary image data (PNG file as bytearray)
  • Size: ~50-150KB

API Response:

{
    "results": [
        {
            "emotions": [
                {"label": "Happy", "confidence": 0.85},
                {"label": "Sad", "confidence": 0.05},
                {"label": "Angry", "confidence": 0.02},
                {"label": "Neutral", "confidence": 0.03},
                {"label": "Fear", "confidence": 0.01},
                {"label": "Disgust", "confidence": 0.02},
                {"label": "Surprise", "confidence": 0.02}
            ]
        }
    ]
}

Data Processing:

emotion = op[0]["emotions"]
analyze = {}
for emo in emotion:
    analyze[emo["label"]] = float(emo["confidence"])
current = max(analyze, key=analyze.get)  # "Happy"

Output: String emotion name (e.g., "Happy")


Phase 3: Playlist Generation

Step 6: Cluster Selection

Emotion String → Cluster Distribution

Server Action:

def get_playlist():
    current = get_emotion()  # "Happy"
    
    # Emotion → Cluster mapping
    if current == "Happy":
        cluster_def = [[2, 10], [4, 5], [1, 6]]
        # Cluster 2: 10 songs
        # Cluster 4: 5 songs
        # Cluster 1: 6 songs

Cluster Ranges:

songlist = {
    1: [1, 170],      # 170 songs
    2: [171, 334],    # 164 songs
    3: [335, 549],    # 215 songs
    4: [550, 740],    # 191 songs
    5: [741, 903]     # 163 songs
}

Step 7: Song Selection

Cluster Distribution → Random Song Indices → Song Names

Server Action:

with open("test.txt", "rb") as fp:
    songnames = pickle.load(fp, encoding='latin1')

playlist = []
for sets in cluster_def:  # [[2, 10], [4, 5], [1, 6]]
    for i in range(sets[1]):  # Repeat N times
        ss = random.randint(songlist[sets[0]][0], songlist[sets[0]][1])
        playlist.append(f"{ss:03d}.mp3_{songnames[ss]}")

Example Execution (Happy emotion):

  1. Cluster 2, 10 songs: Random from 171-334
    • "234.mp3_Night in Tunisia - Blakey"
    • "189.mp3_Along Came Jones - Coasters"
    • ... (8 more)
  2. Cluster 4, 5 songs: Random from 550-740
    • "612.mp3_Some Song - Artist"
    • ... (4 more)
  3. Cluster 1, 6 songs: Random from 1-170
    • "045.mp3_Another Song - Artist"
    • ... (5 more)

Output: List of 21 formatted strings


Step 8: Response Generation

Playlist Array → HTML Template → HTTP Response

Server Action:

return flask.render_template("musi.html", songs=playlist)

Data Sent:

<script>
var songlist = [
    "234.mp3_Night in Tunisia - Blakey",
    "189.mp3_Along Came Jones - Coasters",
    ...
];
</script>

Phase 4: Playback

Step 9: Audio Playback

Song List → Audio Element → Speaker

Client Action:

$('#aud').on('ended', function() {
    var str = (songlist[i].split("_"))[0];  // "234.mp3"
    var name = (songlist[i].split("_"))[1]; // "Night in Tunisia - Blakey"
    
    document.getElementById('ss').innerHTML = name;
    i = i + 1;
    
    $('#aud').attr('src', '/static/music/' + str);
    $('#aud').load();
});

Data Flow:

  1. Parse song string → filename + display name
  2. Update UI with song name
  3. Set audio source: /static/music/234.mp3
  4. Browser requests MP3 file from server
  5. Audio decoded and played

Step 10: Continuous Monitoring

Song Counter → Snapshot Trigger

Client Action:

if (i == 20) {
    setTimeout(snapshot, 5000);
}

Data Flow:

  • After 20th song ends
  • Wait 5 seconds
  • Capture new snapshot
  • Return to Phase 2 (Emotion Detection)

Phase 5: Emotion Report

Step 11: Graph Generation

Emotion History → Matplotlib → Image File

Triggered by: User clicks "Stop WebCam / See report"

Client Action:

function stopWebcam() {
    webcamStream.stop();
    window.location.href = "/graph";
}

Server Action:

@app.route('/graph')
def get_graph():
    get_emotion_grid()
    songs = get_playlist()
    return flask.render_template("musi.html", songs=songs)

Graph Generation:

def get_emotion_grid():
    data = np.full((5, 10), 81)  # 5×10 grid, default white
    
    for i in range(5):
        for q in range(10):
            if a < len(emot_list):
                data[i, q] = emot_list[a]  # Color code
                a += 1
    
    plt.savefig("static/graph.jpg")

Data Transformation:

  1. emot_list (color codes) → NumPy array
  2. NumPy array → Matplotlib figure
  3. Figure → JPEG file
  4. File saved to static/graph.jpg

Data Persistence

Session Data (In-Memory)

  • emot_list: Global list of emotion color codes
  • webcamStream: Active video stream object
  • songlist: Current playlist (client-side)
  • i: Current song index (client-side)

Persistent Data (Disk)

  • snapshots/pic.png: Latest webcam snapshot (overwritten each time)
  • static/graph.jpg: Emotion history visualization (overwritten)
  • test.txt: Song database (read-only)
  • static/music/*.mp3: Audio files (read-only)

External Data

  • Algorithmia API: Emotion detection results (not stored)

Data Size Estimates

Data Type Size Frequency
Webcam snapshot 50-150 KB Every 20 songs
Base64 image 70-200 KB Every 20 songs
API request 50-150 KB Every 20 songs
API response 1-2 KB Every 20 songs
Playlist data 2-5 KB Every 20 songs
MP3 file 3-5 MB Per song
HTML page 10-20 KB Per page load
Graph image 50-100 KB On demand

Performance Bottlenecks

  1. Algorithmia API Call: 2-5 seconds (network + processing)
  2. Image Encoding: 100-500ms (client-side)
  3. MP3 Loading: 1-3 seconds (depends on file size)
  4. Graph Generation: 500ms-1s (matplotlib rendering)

Error Scenarios

No Face Detected

API returns empty results → Default to "Neutral" → Continue

API Timeout

Network error → Exception → No playlist generated → User sees error

Webcam Access Denied

getUserMedia fails → No video stream → Cannot capture snapshots

Missing Song File

Audio element fails to load → 'error' event → Skip to next song

Clone this wiki locally