-
Notifications
You must be signed in to change notification settings - Fork 12
Data Flow
github-actions edited this page Oct 22, 2025
·
1 revision
This document traces how data flows through the Muze application from initial page load to playlist generation.
┌─────────────┐
│ User visits │
│ / │
└──────┬──────┘
│
▼
┌─────────────────────────┐
│ Flask: index() │
│ Returns musi.html │
│ songs = [] │
└──────┬──────────────────┘
│
▼
┌─────────────────────────┐
│ Browser renders page │
│ - Requests webcam │
│ - Initializes canvas │
│ - Starts video stream │
└──────┬──────────────────┘
│
│ (5 second delay)
▼
┌─────────────────────────┐
│ snapshot() triggered │
│ - Capture video frame │
│ - Convert to base64 │
└──────┬──────────────────┘
│
│ AJAX POST
▼
┌─────────────────────────┐
│ Flask: /hook │
│ - Decode image │
│ - Save to disk │
└──────┬──────────────────┘
│
▼
┌─────────────────────────┐
│ get_emotion() │
│ - Read image file │
│ - Call Algorithmia API │
└──────┬──────────────────┘
│
│ API Response
▼
┌─────────────────────────┐
│ Emotion Analysis │
│ - Parse confidence │
│ - Select max emotion │
│ - Store color code │
└──────┬──────────────────┘
│
▼
┌─────────────────────────┐
│ get_playlist() │
│ - Load song database │
│ - Map emotion→clusters │
│ - Random selection │
└──────┬──────────────────┘
│
│ Playlist array
▼
┌─────────────────────────┐
│ Flask: render template │
│ songs = [21 items] │
└──────┬──────────────────┘
│
│ HTML Response
▼
┌─────────────────────────┐
│ Browser: Page reload │
│ - Parse song list │
│ - Start audio playback │
└──────┬──────────────────┘
│
│ (Every song end)
▼
┌─────────────────────────┐
│ Audio 'ended' event │
│ - Load next song │
│ - Update display │
└──────┬──────────────────┘
│
│ (After 20 songs)
▼
┌─────────────────────────┐
│ snapshot() again │
│ (Cycle repeats) │
└─────────────────────────┘
User → Browser → Flask Server
GET http://localhost:5000/
Server Action:
@app.route('/')
def index():
return flask.render_template("musi.html", songs=[])Data Sent:
- HTML template
- Empty songs array:
[] - Static resources (CSS, JS, jQuery)
Browser → User's Webcam
navigator.getUserMedia()
Client Action:
navigator.getUserMedia(
{ video: true, audio: false },
function(stream) {
video.src = window.URL.createObjectURL(stream);
webcamStream = stream;
},
function(err) { console.log(err); }
);Data Flow:
- Browser requests camera permission
- User grants access
- Video stream →
<video>element - Stream stored in
webcamStreamvariable
Video Stream → Canvas → Base64 String
Client Action:
function snapshot() {
ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
var dataURL = canvas.toDataURL("image/png");
// dataURL format: "..."
}Data Transformation:
- Video frame (raw pixels) → Canvas (400×350)
- Canvas → PNG image
- PNG → Base64 string
- String prefixed with
data:image/png;base64,
Browser → Flask Server
POST /hook
Client Action:
$.ajax({
type: "POST",
url: "/hook",
data: { imageBase64: dataURL }
});Data Sent:
-
imageBase64: Full base64 string (~50-100KB)
Server Action:
@app.route('/hook', methods=['POST'])
def get_image():
image_b64 = request.values['imageBase64']
image_data = re.sub('^data:image/.+;base64,', '', image_b64)
image_PIL = Image.open(BytesIO(base64.b64decode(image_data)))
image_PIL.save("snapshots/pic.png", mode='RGB')Data Transformation:
- Base64 string → Remove prefix
- Base64 → Binary data
- Binary → PIL Image object
- PIL Image → PNG file on disk
File Created: snapshots/pic.png (400×350 RGB)
Flask Server → Algorithmia API
Server Action:
def get_emotion():
input = bytearray(open("snapshots/pic.png", "rb").read())
client = Algorithmia.client('api-key')
algo = client.algo('deeplearning/EmotionRecognitionCNNMBP/1.0.1')
op = algo.pipe(input).resultData Sent to API:
- Binary image data (PNG file as bytearray)
- Size: ~50-150KB
API Response:
{
"results": [
{
"emotions": [
{"label": "Happy", "confidence": 0.85},
{"label": "Sad", "confidence": 0.05},
{"label": "Angry", "confidence": 0.02},
{"label": "Neutral", "confidence": 0.03},
{"label": "Fear", "confidence": 0.01},
{"label": "Disgust", "confidence": 0.02},
{"label": "Surprise", "confidence": 0.02}
]
}
]
}Data Processing:
emotion = op[0]["emotions"]
analyze = {}
for emo in emotion:
analyze[emo["label"]] = float(emo["confidence"])
current = max(analyze, key=analyze.get) # "Happy"Output: String emotion name (e.g., "Happy")
Emotion String → Cluster Distribution
Server Action:
def get_playlist():
current = get_emotion() # "Happy"
# Emotion → Cluster mapping
if current == "Happy":
cluster_def = [[2, 10], [4, 5], [1, 6]]
# Cluster 2: 10 songs
# Cluster 4: 5 songs
# Cluster 1: 6 songsCluster Ranges:
songlist = {
1: [1, 170], # 170 songs
2: [171, 334], # 164 songs
3: [335, 549], # 215 songs
4: [550, 740], # 191 songs
5: [741, 903] # 163 songs
}Cluster Distribution → Random Song Indices → Song Names
Server Action:
with open("test.txt", "rb") as fp:
songnames = pickle.load(fp, encoding='latin1')
playlist = []
for sets in cluster_def: # [[2, 10], [4, 5], [1, 6]]
for i in range(sets[1]): # Repeat N times
ss = random.randint(songlist[sets[0]][0], songlist[sets[0]][1])
playlist.append(f"{ss:03d}.mp3_{songnames[ss]}")Example Execution (Happy emotion):
- Cluster 2, 10 songs: Random from 171-334
"234.mp3_Night in Tunisia - Blakey""189.mp3_Along Came Jones - Coasters"- ... (8 more)
- Cluster 4, 5 songs: Random from 550-740
"612.mp3_Some Song - Artist"- ... (4 more)
- Cluster 1, 6 songs: Random from 1-170
"045.mp3_Another Song - Artist"- ... (5 more)
Output: List of 21 formatted strings
Playlist Array → HTML Template → HTTP Response
Server Action:
return flask.render_template("musi.html", songs=playlist)Data Sent:
<script>
var songlist = [
"234.mp3_Night in Tunisia - Blakey",
"189.mp3_Along Came Jones - Coasters",
...
];
</script>Song List → Audio Element → Speaker
Client Action:
$('#aud').on('ended', function() {
var str = (songlist[i].split("_"))[0]; // "234.mp3"
var name = (songlist[i].split("_"))[1]; // "Night in Tunisia - Blakey"
document.getElementById('ss').innerHTML = name;
i = i + 1;
$('#aud').attr('src', '/static/music/' + str);
$('#aud').load();
});Data Flow:
- Parse song string → filename + display name
- Update UI with song name
- Set audio source:
/static/music/234.mp3 - Browser requests MP3 file from server
- Audio decoded and played
Song Counter → Snapshot Trigger
Client Action:
if (i == 20) {
setTimeout(snapshot, 5000);
}Data Flow:
- After 20th song ends
- Wait 5 seconds
- Capture new snapshot
- Return to Phase 2 (Emotion Detection)
Emotion History → Matplotlib → Image File
Triggered by: User clicks "Stop WebCam / See report"
Client Action:
function stopWebcam() {
webcamStream.stop();
window.location.href = "/graph";
}Server Action:
@app.route('/graph')
def get_graph():
get_emotion_grid()
songs = get_playlist()
return flask.render_template("musi.html", songs=songs)Graph Generation:
def get_emotion_grid():
data = np.full((5, 10), 81) # 5×10 grid, default white
for i in range(5):
for q in range(10):
if a < len(emot_list):
data[i, q] = emot_list[a] # Color code
a += 1
plt.savefig("static/graph.jpg")Data Transformation:
-
emot_list(color codes) → NumPy array - NumPy array → Matplotlib figure
- Figure → JPEG file
- File saved to
static/graph.jpg
-
emot_list: Global list of emotion color codes -
webcamStream: Active video stream object -
songlist: Current playlist (client-side) -
i: Current song index (client-side)
-
snapshots/pic.png: Latest webcam snapshot (overwritten each time) -
static/graph.jpg: Emotion history visualization (overwritten) -
test.txt: Song database (read-only) -
static/music/*.mp3: Audio files (read-only)
- Algorithmia API: Emotion detection results (not stored)
| Data Type | Size | Frequency |
|---|---|---|
| Webcam snapshot | 50-150 KB | Every 20 songs |
| Base64 image | 70-200 KB | Every 20 songs |
| API request | 50-150 KB | Every 20 songs |
| API response | 1-2 KB | Every 20 songs |
| Playlist data | 2-5 KB | Every 20 songs |
| MP3 file | 3-5 MB | Per song |
| HTML page | 10-20 KB | Per page load |
| Graph image | 50-100 KB | On demand |
- Algorithmia API Call: 2-5 seconds (network + processing)
- Image Encoding: 100-500ms (client-side)
- MP3 Loading: 1-3 seconds (depends on file size)
- Graph Generation: 500ms-1s (matplotlib rendering)
API returns empty results → Default to "Neutral" → Continue
Network error → Exception → No playlist generated → User sees error
getUserMedia fails → No video stream → Cannot capture snapshots
Audio element fails to load → 'error' event → Skip to next song