A comprehensive showcase of AI agents built with Google ADK (Agent Development Kit), demonstrating various agent architectures and integrations including MCP tools, A2A protocol, BigQuery, and multi-agent workflows.
This project demonstrates 5 different AI agent implementations, each showcasing different capabilities of the Google ADK framework:
- MCP Agent - Multi-tool integration using Model Context Protocol
- ArXiv Agent - Sequential multi-agent workflow for research paper analysis
- BigQuery Agent - Database querying with vision capabilities
- A2A Agent - Agent-to-Agent communication across different languages
- Sustainability Research Agent - Parallel research execution and synthesis
An Agent Navigator that integrates with multiple open-source tools via Model Context Protocol (MCP).
Connected Tools:
- GitHub Copilot MCP
- Hugging Face MCP
- Context7 MCP
Capabilities: Repository search, model exploration, and contextual information retrieval with multilingual support.
A sequential agent workflow that searches and reviews academic papers from arXiv.
Architecture:
scraper_agent- Fetches latest papers (max 7) based on domainreviewer_agent- Analyzes and reviews paper content
Output: Structured paper summaries with PDF links and analysis.
A dual-mode intelligent assistant combining data analytics with device assessment.
Modes:
- Senior Data Architect - Writes optimized GoogleSQL queries
- Device Assessment Specialist - Grades and values physical devices (iPhone trade-ins)
Features:
- BigQuery integration with write protection
- Custom phone grading tool with vision capabilities
- Context-aware routing logic
Demonstrates Agent-to-Agent (A2A) protocol communication between Python and Go agents.
Components:
- Python agent orchestrator
- Remote Go agent (
check_prime_agent) for prime number verification - Dice rolling sub-agent
Use Case: Cross-language agent collaboration and remote agent integration.
Parallel research agent that investigates multiple sustainability topics simultaneously.
Research Topics:
- Renewable Energy
- Electric Vehicle Technology
- Carbon Capture Methods
Architecture: Uses ParallelAgent to run research tasks concurrently, then merges results.
aadk/
├── agents/
│ ├── a2a_agent/ # Agent-to-Agent communication
│ │ └── remote_a2a/
│ │ └── check_prime_agent/ # Go-based remote agent
│ ├── arxiv_agent/ # Sequential paper research
│ │ └── sub_agents/
│ ├── bq_agent/ # BigQuery database agent
│ │ ├── prompts/
│ │ └── tools/
│ ├── mcp_agent/ # MCP tool integrations
│ └── sustainability_research_agent/ # Parallel research
├── shared/
│ └── config.py # Shared configuration
├── pyproject.toml
├── Makefile
└── README.md
- Python >= 3.12
- Go (for A2A remote agent)
- Google Cloud Project with BigQuery access
uv is a fast Python package installer and resolver.
- Install uv
# On Linux/Mac
curl -LsSf https://astral.sh/uv/install.sh | sh
# Or using pip
pip install uv- Clone and setup
git clone <repository-url>
cd aadk- Create virtual environment and install dependencies
uv venv
source .venv/bin/activate # On Linux/Mac
uv pip install -e .- Clone the repository
git clone <repository-url>
cd aadk- Create virtual environment
python -m venv .venv
source .venv/bin/activate # On Linux/Mac- Install dependencies
pip install -e .- Configure environment variables
Create a
.envfile with required credentials:
# API Tokens
GITHUB_TOKEN=your_github_token
HUGGING_FACE_TOKEN=your_hf_token
NOTION_TOKEN=your_notion_token
CONTEXT7_TOKEN=your_context7_token
# Google Cloud
GOOGLE_GENAI_USE_VERTEXAI=FALSE
GOOGLE_CLOUD_PROJECT=your_project_id
GOOGLE_CLOUD_LOCATION=your_location
# BigQuery
BQ_DATASET_NAME=your_dataset
BQ_DATASET_LOCATION=your_location
BQ_TABLE=your_table
BQ_TUKERINAJA_TABLE=your_table
# GCS (if needed)
GCS_BUCKET_NAME=your_bucket
GCS_BLOB_NAME=your_blob
# Model
MODEL_ID=gemini-2.0-flash-001make startThis will:
- Start the Go-based remote A2A agent
- Launch the ADK web interface for all agents
Using the ADK CLI:
# Run specific agent
adk agent run agents/mcp_agent
# Run with web interface
adk web agents/mcp_agentCore:
google-adk[a2a]- Google Agent Development Kita2a-sdk[all]- Agent-to-Agent SDKlangchain- LLM frameworklangchain-google-genai- Google Gemini integration
Data & Processing:
pandas- Data manipulationgoogle-cloud-bigquery- BigQuery clientdb-dtypes- Database type handling
Utilities:
bs4- Web scrapingpypdf- PDF processing
✅ Multi-Agent Architectures - Sequential, Parallel, and Remote agent patterns
✅ MCP Integration - Model Context Protocol for tool interoperability
✅ Cross-Language A2A - Python-Go agent communication
✅ Vision Capabilities - Multimodal phone grading
✅ BigQuery Integration - Secure database querying
✅ Research Automation - Parallel web research and synthesis
Apache License 2.0 (see agent files for full license text)
| Agent | Pattern | Communication |
|---|---|---|
| MCP Agent | Single Agent | HTTP/MCP |
| ArXiv Agent | Sequential | Internal |
| BQ Agent | Single Agent | BigQuery API |
| A2A Agent | Remote/Hybrid | A2A Protocol |
| Sustainability Agent | Parallel + Sequential | Internal |
Adding a new agent:
- Create agent directory under
agents/ - Implement
agent.pywithroot_agentexport - Add
__init__.pywith settings import - Configure in shared settings if needed
Agent Template:
from google.adk.agents import Agent
root_agent = Agent(
name="my_agent",
model="gemini-2.0-flash-001",
instruction="Your system instruction",
tools=[],
)Built with Google ADK 🚀