Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 30 additions & 13 deletions examples/dreambooth/train_dreambooth_lora_flux_kontext.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,9 @@
import numpy as np
import torch
import transformers
from accelerate import Accelerator
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.state import AcceleratorState
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from huggingface_hub.utils import insecure_hashlib
Expand Down Expand Up @@ -1222,6 +1223,9 @@ def main(args):
kwargs_handlers=[kwargs],
)

if accelerator.distributed_type == DistributedType.DEEPSPEED:
AcceleratorState().deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size

# Disable AMP for MPS.
if torch.backends.mps.is_available():
accelerator.native_amp = False
Expand Down Expand Up @@ -1436,17 +1440,20 @@ def save_model_hook(models, weights, output_dir):
text_encoder_one_lora_layers_to_save = None
modules_to_save = {}
for model in models:
if isinstance(model, type(unwrap_model(transformer))):
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
model = unwrap_model(model)
transformer_lora_layers_to_save = get_peft_model_state_dict(model)
modules_to_save["transformer"] = model
elif isinstance(model, type(unwrap_model(text_encoder_one))):
elif isinstance(unwrap_model(model), type(unwrap_model(text_encoder_one))):
model = unwrap_model(model)
text_encoder_one_lora_layers_to_save = get_peft_model_state_dict(model)
modules_to_save["text_encoder"] = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")

# make sure to pop weight so that corresponding model is not saved again
weights.pop()
if weights:
weights.pop()

FluxKontextPipeline.save_lora_weights(
output_dir,
Expand All @@ -1459,15 +1466,25 @@ def load_model_hook(models, input_dir):
transformer_ = None
text_encoder_one_ = None

while len(models) > 0:
model = models.pop()
if not accelerator.distributed_type == DistributedType.DEEPSPEED:
while len(models) > 0:
model = models.pop()

if isinstance(model, type(unwrap_model(transformer))):
transformer_ = model
elif isinstance(model, type(unwrap_model(text_encoder_one))):
text_encoder_one_ = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
if isinstance(unwrap_model(model), type(unwrap_model(transformer))):
transformer_ = unwrap_model(model)
elif isinstance(unwrap_model(model), type(unwrap_model(text_encoder_one))):
text_encoder_one_ = unwrap_model(model)
else:
raise ValueError(f"unexpected save model: {model.__class__}")

else:
transformer_ = FluxTransformer2DModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="transformer"
)
transformer_.add_adapter(transformer_lora_config)
text_encoder_one_ = text_encoder_cls_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder"
)

lora_state_dict = FluxKontextPipeline.lora_state_dict(input_dir)

Expand Down Expand Up @@ -2063,7 +2080,7 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
progress_bar.update(1)
global_step += 1

if accelerator.is_main_process:
if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED:
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
Expand Down