Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
95456d8
Upload files about CS274A-2025-KuangPenghao
kuangpenghao Sep 8, 2025
f618575
Upload handwriting notes of CS274A-KuangPenghao
kuangpenghao Sep 8, 2025
518a6c9
Upload handwriting notes of CS274A-KuangPenghao
kuangpenghao Sep 8, 2025
04d819c
Upload handwriting notes of CS274A-KuangPenghao
kuangpenghao Sep 8, 2025
43e42bd
Create README.md for cheatsheet documentation
kuangpenghao Sep 8, 2025
acaa5af
Add README.md for final review notes
kuangpenghao Sep 8, 2025
72b21a3
Delete courses/CS274A/CS274A.01_Spring_2025/cheatsheet/README.md
kuangpenghao Dec 14, 2025
a584850
Delete courses/CS274A/CS274A.01_Spring_2025/cheatsheet/cheatsheet.md
kuangpenghao Dec 14, 2025
0ed9327
Delete courses/CS274A/CS274A.01_Spring_2025/final_review_note/CS274_R…
kuangpenghao Dec 14, 2025
9605751
Delete courses/CS274A/CS274A.01_Spring_2025/final_review_note/README.md
kuangpenghao Dec 14, 2025
34393ba
Merge branch 'i-TechX:file-base' into file-base
kuangpenghao Dec 14, 2025
e5a09d8
Create folder cheatsheet kph
kuangpenghao Dec 14, 2025
e6ae9a5
Delete courses/CS274A/CS274A.01_Spring_2025/Cheatsheet 速查清单/cheatshee…
kuangpenghao Dec 14, 2025
c87be59
upload cheatsheet
kuangpenghao Dec 14, 2025
57a7328
Delete courses/CS274A/CS274A.01_Spring_2025/cheatsheet directory
kuangpenghao Dec 14, 2025
ebd39d0
Delete courses/CS274A/CS274A.01_Spring_2025/final_review_note directory
kuangpenghao Dec 14, 2025
76f0f8d
upload review note markdown
kuangpenghao Dec 14, 2025
2be359c
Add files via upload
kuangpenghao Dec 14, 2025
48de7bd
Create cheatsheet kph.md
kuangpenghao Dec 14, 2025
8b3c76c
Delete courses/CS274A/CS274A.01_Spring_2025/handwriting_review_notes …
kuangpenghao Dec 14, 2025
685deab
Create readme
kuangpenghao Dec 14, 2025
aab22d2
Add files via upload
kuangpenghao Dec 14, 2025
c66bfa6
Add files via upload
kuangpenghao Dec 14, 2025
7baae82
Add files via upload
kuangpenghao Dec 14, 2025
860fdac
Delete courses/CS274A/CS274A.01_Spring_2025/handwriting review notes/…
kuangpenghao Dec 14, 2025
92ff201
Create readme.md
kuangpenghao Dec 16, 2025
64984f6
Add files via upload
kuangpenghao Dec 16, 2025
e683a4e
Delete courses/MATH1112/MATH1112.01_Fall_2025/Tutorials/readme.md
kuangpenghao Dec 16, 2025
47e6ca9
Create tutorial videos for MATH1112 course
kuangpenghao Dec 16, 2025
f704616
Add open source link for tutorial materials
kuangpenghao Dec 16, 2025
ec8346f
add meta.json
kuangpenghao Jan 13, 2026
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
**Regular expressions**

+(匹配前方表达式一次及以上) *(匹配0次及以上) ?(匹配0或1次)

\w:任何字符(大小写&数字) \~ [A-Z]:大小写 \~ \\.:"." \~ \ \ $:" $" \~ \d:[0-9]

**word normalization**:Lemmatization:将所有词转化成词根(Morphological Parsing)

**Sentence Segmentation:tokenize first,done by rules**

---

**Word Representation**

**\#** Co-occurrence matrices(sparse vector)

__行__:该词的向量表示,列:共现词; __PMI矩阵__(PMI越大,相关性越大) $\log _2{\frac{xy}{x·y}} $; __PPMI矩阵__:PMI最小值为0; __防止bias__(极低频词)情况:smoothing

**\#** Dense vector(word2vec)

__skip-grams__(c预测o): $p(w_{t+j}|w_t) $=点积softmax; __c嵌入__: $v_w $,o嵌入 $u_w $; __优化__: $p(cooccur|c,o)=sigmoid(u_o·v_c) $,负采样调整似然; __CBOW__:bag of o预测c

**\#** Evaluation:Intrinsic(more fast) & Extrinsic

---

**Document Representation**

**\#** Co-occurence matrices(行:词表,列:篇章)

**tf** $=\log_{10}(count(t,d)+1) $(对于每个文档中的每个词)**文档频数**df **idf**= $ \log _{10}\frac{N}{df_i} $ (衡量词的出现和文档的相关性) $ w_{t,d}=tf_{t,d}*idf_t $

**\#** Dense-vector:SVD(LSA),neural methods

---

**Text Classification Rule-based**:char-level or word-level regular expressions

**Text Classification ML**

**\#** Naive Bayes:词袋模型

__learning__:MLE,闭式解; __Smoothing__:计算 $P(w_i|c_j) $时,分子+1,分母+V; __ignoreUKW__

**\#** logistic-Regression:文档的特征向量二/多分类:正则化最小交叉熵,梯度学习

---

**Mixture of Gaussian(MoG)**

**\#** unsupervised learning:EM:__E__: $P(y_i=k|x_i,\theta^{t}) $;__M__: $\mu,\Sigma,\pi $,存在闭式解

**\#** purity= $\frac{1}{N}\sum_{m} max_{d}(m,d) $,inverse purity= $\frac{1}{N}\sum_{d} max_{m}(m,d) $,m为聚类,d为golden种类

---

**Intrinsic:Perplexity**: $l=-\frac{1}{M}\sum _{i=1}^m\log _2p(x_i) $

---

**N-gram**

**\#** Smoothing:每个N-grams频数+lambda,重算概率

**\#** Method2:Backoff and Interpolation(回退|插值)

---

**RNN( $O(n) $)** 无稀疏性问题、不储存n-grams

**\#** __Training__:对 $J(\theta) $SGD; __Problems__:Exploding(clipping)

**\#** LSTM(forget/input/output gate)&GRU(update/reset gate)

**\#** Multi-layer RNN

**\#** Bidirectional RNN(正反序独立再拼接,整序列建模)

---

**Attention**:每时间步都为 $O(n) $

**\#** __Causal Masking__(-inf),__Scaled__( $\sqrt{d_k} $),__Multi-head__:m种低维空间,m个A(Q,K,V)= $Softmax(\frac{QK^T}{\sqrt{d_k}})V $,多头线性拼接

---

**Transformer**:基于先前所有词的Attn预测下一词的概率

**\#** PE:文本无关的2d正弦编码or可学习向量; Relative Embeddings:解决泛化等问题(偏移对应编码,加在k,v; 注意力递减; RoPE矩阵 $\Theta_{n-m} $; NoPE); layer normalization(避免shifting,Attn FFN)

**\#** 复杂度 $T^2d_k $,Sparse/Linear attn

---



**ELMo**:2层正反向LSTM,CNN初始嵌入,残差连接,共享嵌入&softmax,每层每时间步hidden加权求和; end-task与finetune

**BERT**:BPE,Transformer,MLM; finetuning,prompting,prompt tuning(soft),NSP&CLS表句子信息

**GPT**:单向,attn mask; finetuning(最后token连接下游),prompting/incontext learning/chain-of-thought prompting

**BART**:噪声文本预训练,解码器解除噪声

**T5**:有/无监督数据转为text2text训练

**GLM**:decoder-only,autoregressive blank infilling

---

**Pretraining**:Scaling law(参数,数据,迭代,loss与x轴); Emergence能力

**微调** Inst-Finetuning,PEFT{Prompt tuning,prefix tuning(KV加参数),Adaptor,LoRA(3个LoRA)}

**RLHF**:对齐偏好(RM,比较二分类,正则化); DPO(E[R]闭式解); (for chain of thought)

**Parallel**:Jacobi Decoding(并行自回归); Speculative Decoding(drafting,LLM并行自回归)(增加命中率:树形drafting)

**KV Cache**:Head:MQA GQA MLA(矩阵压缩矩阵还原);Layer:LCKV YOCO CLA;Token:pruning merging

**RAG**:IG信息检索(Retriver),检索到的信息作为LLM query信息的一部分(Generator)

---

**Seq to Seq**

**\#** Transformer(unmask)(MaskMH+CrossKV)

**\#** Learning:链式法则似然MLE,end2end优化,teacher forcing训练,Sol为scheduled sampling

**\#** __Decoding__:greedy|beam(取平均对数似然); __Diversity__ $\rightarrow $top-k/p sampling; NAT(预测长度k,并行无码解码)

---

**HMM**

**\#** Inference:Viterbi, $O(nY^2) $; Marginal Inference:Forward-Algorithm(改sum)

**\#** SL:eq积似然MLE,统计闭式解,稀疏性

**\#** USL(apply:POS): P(sentence)似然EM; __E__:expected count(求标签转移发射,Forward-Backward); __M__:联合对数似然,归一闭式解; __还可GD__:forward算p(sentenses)似然再backprop,像Forward-Backward

**\#** MEMM:每步( $s=s_e+s_q $softmax)相乘; label bias(weights)

---

**CRF**

**\#** Inference: **每步得分和**softmax似然取对数; __Viterbi__

**\#** SL:softmax对数似然MLE,Forward-Algorithm求Z; Forward-Backward(求EC)做GD|SSVM(可能用vitebi,考虑标签损失&偏重boundary,loss不可微)

**\#** USL:E-Decoder,forward算loss,GD优化(不可算P(sentence))

---

**Neural**

**\#** Neural CRF:神经方法计算potentials emission

**\#** Inference:__不用CRF__:逐位置独立neural softmax; __用CRF__:Viterbi

**\#** Learning:似然估计|边际损失(similar to CRF learning)

---

**Constituency Parsing**:得分取和

**Span-based**

**\#** 每点打分:Discriminative:feature of span,或词嵌入&Biaffine

**\#** Parsing:CYK(Bottom up DP)(求和转移,s(i,j)取maxl)

**\#** SL:** $\sum(i,j,l) $softmax**似然MLE,**Z**:Inside Algorithm(s'(i,j)取suml,相乘转移); **SGD**; **Alternative**:margin-based loss

---

**Context-Free(P/SCFG,WCFG)**

**\#** Parsing:Bottom-up DP:CYK(CNF,PCFG)(概率积转移)

**\#** __SL-Gene(PCFG)__:概率积似然MLE,闭式解; __SL-Dis(WCFG)__:权重积softmax似然,inside algorithm(3参数,两子树*rule概率求和)算Z,SGD,margin-based loss alternative

**\#** USL:结构|参数\{P(sentence)MLE,**E**算树分布,用inside-outside算ECounts,**M**算参数,ECounts归一闭式解\},**或梯度下降**,P(sentence)用inside算

---

**Transition-based**

**\#** Parsing:Greedy,Beam-search

**\#** learning:训练分类器; potential flaw(只见过正确):Dynamic oracle

---

**Graph-based Dependency**

**\#** CYK: $O(n^3 |G|)=O(n^5) $

**\#** Proj:Eisner:( $O(n^3) $),Non-proj:MST:( $O(n^3) $)

**\#** SL:**s(t)softmax**似然,**Z**用sum Eisner|Kirchff; **head**-selection,梯度优化

**\#** USL:**Gene**:EM|SGD2P(sentence),类PCFG; **Dis**:CRF-autoencoder(每词预测head),SGD

---

**Lexical Semantics**

**\#** relations:synonymy(同义),Antonymy(反义),Hyponymy(前者is a后者),Hypernymy(前者contains后者),Meronymy(A is part of),Holonymy(A has a)

**\#** Wordnet synset,relations; distance为上下位最短路

**\#** WSD:seq labeling

---

**Formal meaning representation**

**\#** Semantic Graphs:word(DM PSD)part(EDS)unanchord

**\#** Parse2formal:**SCFG**:非终结符 $\rightarrow $(自然&非终结)/(形式&非终结),两树节点对应(自然语言构建左树,替换右树,形式化表示)

**\#** Neural-parsing:seq to seq|semantic graph(基于转移|图)

**\#** learning:weak supervised(运行结果)

---

**Semantics Role Labeling**

**\#** PropBank(roles较少,general),FrameNet(frame,谓词集和角色)

**\#** 标注:seq labeling,graph-based,seq to seq

---

**Information Extraction**:NER(span classification),实体链接,关系提取(dependency),事件信息(seq2seq)

---

**coherent**:{Lexical Chains,Cerefenrece Chains,Discourse Markers}

**\#** 连贯性关系:RST:satellite to nucleus

**\#** 篇章结构:节点为EDU(seq labeling解析),边为RST(成分|依存解析)

---

**Coreference**:(1):mention(POS,成分,命名实体分析)(rules,二分类等); (2)clustering:{1.clustering:二分类器,远端困难; 2.ranking:选一个,语义特征或神经法训练,transitice closure解码,(inverse)purity}
Binary file not shown.
Loading