Skip to content

imclab/xrai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

270 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Unity XR AI Knowledgebase

Permanent intelligence amplification infrastructure for Unity XR/AR/VR development

License: MIT Token Optimized Security Audited

A comprehensive, token-optimized knowledgebase with an AI Agent Intelligence Amplification System designed for 10x faster learning and execution in Unity XR development.


πŸ“‹ Table of Contents


🎯 Overview

This repository contains a self-improving knowledgebase and AI agent system optimized for Unity XR (AR/VR/MR) development. It implements state-of-the-art best practices from 2026, including:

  • AI Agent Intelligence Amplification - 7 meta-frameworks unified into a single execution system
  • Token-optimized architecture - 9.3K tokens (26% reduction from initial 12.7K)
  • Security audited - No private information, clean codebase
  • Cross-tool compatible - Works with Claude Code, Windsurf, Cursor, and other AI tools
  • Comprehensive documentation - AR Foundation, VFX, WebGL, performance patterns, and more

Primary use cases:

  • Unity AR/VR/XR development with AR Foundation 6.x
  • VFX and particle systems optimization
  • WebGL/Three.js integration
  • Cross-platform performance optimization (Quest, iOS, Android)
  • AI-assisted development workflows

⚑ Key Features

1. AI Agent Intelligence Amplification System

Ultra-compact directive (875 tokens) that transforms every interaction into compound learning:

  • Leverage Hierarchy: Existing(0h) > Adapt(0.1x) > AI(0.3x) > Scratch(1x)
  • Emergency Override: Protocol for >15min stalls (Simplify β†’ Leverage β†’ Reframe β†’ Ship)
  • Auto-logging: Pattern extraction β†’ LEARNING_LOG.md
  • Success Metrics: Session/month/quarter tracking

Philosophy: Based on mental models from Elon Musk (first principles), Naval Ravikant (leverage), and Jeff Bezos (long-term thinking).

2. Intelligence Pattern Libraries (NEW)

Three activation phrase-based pattern libraries for domain-specific knowledge:

Phrase Patterns Coverage
"Using Unity Intelligence patterns" 500+ ARFoundation, VFX Graph, DOTS, Normcore, Open Brush
"Using WebGL Intelligence patterns" 200+ WebGPU, Three.js, R3F, GLSL, WebXR
"Using 3DVis Intelligence patterns" 100+ Sorting, clustering, anomaly detection, force layouts

3. Comprehensive Unity XR Knowledge

  • AR Foundation 6.2+ - Plane detection, image tracking, human segmentation, meshing
  • VFX Optimization - Quest 2/3 performance patterns, GPU-instanced particles
  • WebGL Integration - Three.js interop, Unity-to-Web bridges
  • Cross-platform - iOS, Android, Quest, WebGL compatibility matrices
  • GitHub Repos - Curated collection of high-quality XR projects

4. Monitoring & Automation

Built-in tools for health checking and optimization:

  • ai-system-monitor.sh - Token usage, symlink verification, health dashboard (<3s)
  • kb-security-audit.sh - Privacy scanning, permission checks, integrity validation
  • validate-ai-config.sh - Configuration validation and auto-healing

New KB Management Tools:

  • kb-add - Easy manual/automatic KB additions (patterns, insights, auto-git extraction)
  • kb-audit - Health check with metrics, recommendations, and security scan

5. Token-Optimized Architecture

Load Order:
1. GLOBAL_RULES.md        (~7.6K tokens)
2. AI_AGENT_V3.md         (~0.9K tokens)
3. Claude config          (~0.8K tokens)
4. Project overrides      (~2K tokens)
────────────────────────────────────────
Total overhead:           ~9.3K tokens βœ…

26% reduction from initial 12.7K tokens while maintaining full functionality.


πŸš€ Quick Start

Installation

# Clone the repository
git clone https://github.com/imclab/xrai.git
cd xrai

# Set up symlinks for AI tools (optional)
ln -sf $(pwd)/KnowledgeBase ~/.claude/knowledgebase
ln -sf $(pwd)/KnowledgeBase ~/.windsurf/knowledgebase
ln -sf $(pwd)/KnowledgeBase ~/.cursor/knowledgebase

Basic Usage

With Claude Code:

# The knowledgebase is automatically loaded via configuration hierarchy
# See ~/.claude/CLAUDE.md for load order

Access the AI Agent directive:

cat ~/.claude/AI_AGENT_CORE_DIRECTIVE_V3.md

Browse the knowledgebase:

ls KnowledgeBase/
cat KnowledgeBase/_MASTER_KNOWLEDGEBASE_INDEX.md

🌐 Access Methods

Local Machine Access

1. Direct Filesystem Access

After cloning, the knowledgebase is immediately available:

# Navigate to repository
cd ~/path/to/xrai

# Read any file directly
cat KnowledgeBase/LEARNING_LOG.md
cat KnowledgeBase/_AI_AGENT_PHILOSOPHY.md

# Search across all knowledge
rg "performance optimization" KnowledgeBase/

# List all markdown files
find KnowledgeBase -name "*.md" -type f

2. Symlinked Access (Recommended for AI Tools)

Create symlinks for seamless integration with AI development tools:

# Claude Code
ln -sf ~/path/to/xrai/KnowledgeBase ~/.claude/knowledgebase

# Windsurf
ln -sf ~/path/to/xrai/KnowledgeBase ~/.windsurf/knowledgebase

# Cursor
ln -sf ~/path/to/xrai/KnowledgeBase ~/.cursor/knowledgebase

# Verify symlinks
ls -lh ~/.claude/knowledgebase
ls -lh ~/.windsurf/knowledgebase
ls -lh ~/.cursor/knowledgebase

3. IDE/Editor Integration

VS Code (with Claude Code extension):

# Open in VS Code
code ~/path/to/xrai

# The knowledgebase is automatically available via MCP
# Files appear in: ~/.claude/knowledgebase/

Command Line (with ripgrep):

# Search for Unity patterns
rg -i "AR Foundation|ARKit" ~/.claude/knowledgebase/

# Search for performance tips
rg "Quest.*90 fps|optimization" ~/.claude/knowledgebase/

# Find specific topics
rg "VFX Graph|particle system" ~/.claude/knowledgebase/

4. Monitoring Tools (if installed)

# Health check
ai-system-monitor.sh --quick

# Security audit
kb-security-audit.sh

# Token usage analysis
ai-system-monitor.sh --full | grep "token usage"

Cloud Access

1. GitHub Web Interface

Browse directly in your browser:

2. GitHub API (RESTful Access)

Access files programmatically:

# List knowledgebase contents
curl https://api.github.com/repos/imclab/xrai/contents/KnowledgeBase

# Get specific file (base64 encoded)
curl https://api.github.com/repos/imclab/xrai/contents/KnowledgeBase/LEARNING_LOG.md

# Search within repository
curl -H "Accept: application/vnd.github.v3+json" \
  https://api.github.com/search/code?q=performance+repo:imclab/xrai

3. Raw File Access (Direct Download)

Access raw markdown files:

# Direct raw file URL
curl https://raw.githubusercontent.com/imclab/xrai/main/KnowledgeBase/LEARNING_LOG.md

# Download specific file
wget https://raw.githubusercontent.com/imclab/xrai/main/KnowledgeBase/_AI_AGENT_PHILOSOPHY.md

# View in browser
open "https://raw.githubusercontent.com/imclab/xrai/main/KnowledgeBase/_MASTER_KNOWLEDGEBASE_INDEX.md"

4. Clone on Any Device

Access from any machine with git:

# Clone to new device
git clone https://github.com/imclab/xrai.git ~/xrai-remote
cd ~/xrai-remote

# Pull latest updates
git pull origin main

# Read-only access (no git needed)
curl -L https://github.com/imclab/xrai/archive/refs/heads/main.zip -o xrai.zip
unzip xrai.zip
cd xrai-main/KnowledgeBase

5. GitHub Mobile App

On iOS/Android:

  1. Install GitHub mobile app
  2. Navigate to imclab/xrai
  3. Browse KnowledgeBase/ folder
  4. Read any .md file (rendered)

Multi-Device Sync Strategy

Scenario 1: Work from multiple machines

# Machine 1: Set up and push changes
cd ~/xrai
echo "New discovery..." >> KnowledgeBase/LEARNING_LOG.md
git add . && git commit -m "Add discovery"
git push origin main

# Machine 2: Pull changes
cd ~/xrai
git pull origin main
# Your changes are now synced

Scenario 2: Mobile-to-Desktop workflow

  1. On mobile: View files via GitHub web or app
  2. Take notes: Use GitHub Issues or local notes app
  3. On desktop: Pull repo and add notes to LEARNING_LOG.md
  4. Push changes: Available everywhere

Scenario 3: Cloud-first (no local clone)

# Edit via GitHub web interface
# 1. Navigate to file on GitHub
# 2. Click "Edit" (pencil icon)
# 3. Make changes
# 4. Commit directly to main

# Or use GitHub CLI
gh repo clone imclab/xrai
cd xrai
gh browse  # Opens in browser

AI Tool Integration

Claude Code (automatic):

# Configuration auto-loads KB via symlink
# Location: ~/.claude/knowledgebase/
# See: ~/.claude/CLAUDE.md for load order

# Query in Claude Code:
# "Check knowledgebase for AR Foundation patterns"
# "Search KB for Quest optimization techniques"

Windsurf:

# Set up symlink (one-time)
ln -sf ~/xrai/KnowledgeBase ~/.windsurf/knowledgebase

# Access in Windsurf:
# Files appear in sidebar under "Knowledgebase"

Cursor:

# Set up symlink (one-time)
ln -sf ~/xrai/KnowledgeBase ~/.cursor/knowledgebase

# Access in Cursor:
# Reference files via @knowledgebase/filename.md

MCP Server (if available):

# Via Model Context Protocol
# Tools have access to:
# - mcp__filesystem__read_file(path="~/.claude/knowledgebase/LEARNING_LOG.md")
# - mcp__filesystem__search_files(pattern="*.md")
# - mcp__filesystem__list_directory(path="~/.claude/knowledgebase/")

Access Patterns Comparison

Method Speed Offline Multi-device Versioned AI-Ready
Local filesystem Instant βœ… ❌ βœ… (git) βœ…
Symlinks Instant βœ… ❌ βœ… (git) βœ…βœ…
GitHub web 1-2s ❌ βœ… βœ… ❌
GitHub API 1-2s ❌ βœ… βœ… βœ… (programmatic)
Git clone 5-10s βœ… (after) βœ… βœ… βœ…
Raw files 1-2s ❌ βœ… ❌ ⚠️ (limited)

Recommended:

  • Development: Local clone + symlinks (instant, AI-integrated)
  • Reference: GitHub web (convenient, no setup)
  • Automation: GitHub API (programmatic access)
  • Multi-device: Git clone on each machine + sync via push/pull

πŸ—οΈ Architecture

Directory Structure

Unity-XR-AI/
β”œβ”€β”€ KnowledgeBase/                 # Core knowledge repository (~75 MD files)
β”‚   β”œβ”€β”€ .claude/                   # Claude-specific documentation
β”‚   β”œβ”€β”€ AgentSystems/              # Agent architecture patterns
β”‚   β”œβ”€β”€ CodeSnippets/              # Reusable code snippets
β”‚   β”œβ”€β”€ scripts/                   # KB automation scripts
β”‚   β”œβ”€β”€ _scraps/                   # Archived files (aliases, dated reports)
β”‚   β”œβ”€β”€ LEARNING_LOG.md            # Continuous discovery log
β”‚   β”œβ”€β”€ _MASTER_KNOWLEDGEBASE_INDEX.md
β”‚   β”œβ”€β”€ _PROJECT_CONFIG_REFERENCE.md  # All configs documented
β”‚   β”œβ”€β”€ _VFX25_HOLOGRAM_PORTAL_PATTERNS.md
β”‚   └── [70+ knowledge files]
β”œβ”€β”€ Vis/                           # 3D Visualization frontends
β”‚   β”œβ”€β”€ xrai-kg/                   # Modular KG library (ECharts)
β”‚   β”œβ”€β”€ HOLOVIS/                   # Three.js holographic visualizer
β”‚   β”œβ”€β”€ cosmos-standalone-web/     # 3d-force-graph visualizer
β”‚   β”œβ”€β”€ cosmos-needle-web/         # Needle Engine WebXR
β”‚   β”œβ”€β”€ cosmos-visualizer/         # D3 + Three.js graphs
β”‚   β”œβ”€β”€ WarpDashboard/             # Jobs data dashboard
β”‚   β”œβ”€β”€ chalktalk-master/          # Ken Perlin's Chalktalk (WebGL)
β”‚   └── *.html                     # Standalone dashboards
β”œβ”€β”€ MetavidoVFX-main/              # Unity VFX project (AR Foundation)
β”‚   β”œβ”€β”€ Assets/H3M/                # H3M Hologram system
β”‚   β”œβ”€β”€ Packages/                  # Unity packages
β”‚   └── build_and_deploy.sh        # iOS build scripts
β”œβ”€β”€ Scripts/                       # Utility scripts
β”‚   └── scraps/                    # Archived experimental scripts
β”œβ”€β”€ mcp-server/                    # MCP KB Server (TypeScript)
β”œβ”€β”€ specs/                         # Spec-Kit specifications
β”œβ”€β”€ xrai-speckit/                  # Specify.ai templates
β”œβ”€β”€ build_ios.sh                   # iOS Unity build
β”œβ”€β”€ deploy_ios.sh                  # iOS device deploy
β”œβ”€β”€ install.sh                     # Project setup
β”œβ”€β”€ CLAUDE.md                      # Configuration pointer
└── README.md                      # This file

Integration Points

Local Tools (via symlinks):

~/.claude/knowledgebase/    β†’ xrai/KnowledgeBase/
~/.windsurf/knowledgebase/  β†’ xrai/KnowledgeBase/
~/.cursor/knowledgebase/    β†’ xrai/KnowledgeBase/

Cloud Access (via GitHub):

GitHub API: https://api.github.com/repos/imclab/xrai/contents/
Web: https://github.com/imclab/xrai

πŸ€– AI Agent System

Core Principles

1. Leverage-First Execution

Always prefer higher leverage:
β”œβ”€ 0h:   Use existing solution (search KB, past projects)
β”œβ”€ 0.1x: Adapt from KB (modify existing pattern)
β”œβ”€ 0.3x: AI-assisted generation with review
└─ 1x:   Write from scratch (avoid unless necessary)

2. Compound Learning Every task should:

  • Extract 2-3 reusable patterns
  • Document novel insights β†’ LEARNING_LOG.md
  • Identify automation opportunities
  • Connect to past projects (cross-domain learning)

3. Emergency Override If stuck >5 minutes:

  1. Simplify: Did we overcomplicate? What's the dumbest working solution?
  2. Leverage: Who solved this already?
  3. Reframe: Is this the right problem?
  4. Ship: Can we ship 20% now and iterate?

Philosophy

See KnowledgeBase/_AI_AGENT_PHILOSOPHY.md for deep-dive on:

  • Billionaire-level thinking (systems over symptoms)
  • 10x learning velocity (spaced extraction, Feynman technique)
  • Time compression strategies (10 years β†’ 1 year)
  • Identity reprogramming (limiting beliefs β†’ growth beliefs)

Quick Reference

Daily activation checklist:

Pre-Task (5 seconds):

  • Can I reuse existing solution?
  • What's the 20% that gives 80%?
  • What pattern will I extract?

Post-Task (10 seconds):

  • Novel pattern β†’ LEARNING_LOG.md
  • Automation opportunity?
  • Meta-reflection: How can I think better?

πŸ–₯️ Visualization Frontends (Vis/)

The Vis/ folder contains 10 3D visualization and dashboard tools, sorted by creation date:

Project Created Stack Description
chalktalk-master 2018 Node.js + WebGL Ken Perlin's sketch-to-3D visualization
HOLOVIS 2025-06 Three.js + Express Unity codebase 3D visualizer
cosmos-visualizer 2025-09 Vite + D3 + Three.js Force-directed graph visualization
cosmos-standalone-web 2025-09 Vite + 3d-force-graph Standalone 3D force graphs
cosmos-needle-web 2025-09 Needle Engine + Vite WebXR-ready visualization
WarpDashboard 2025-12 Static HTML Jobs data dashboard
xrai-kg 2026-01 ES6 + ECharts Modular knowledge graph library
dashboard.html 2026-01 Standalone HTML General dashboard
knowledge-graph-*.html 2026-01 ECharts Interactive knowledge graph dashboards

Quick Start:

cd Vis/xrai-kg && npm install && npm run dev     # ECharts KG library
cd Vis/HOLOVIS && npm install && npm run serve   # Three.js visualizer
cd Vis/cosmos-standalone-web && npm run dev      # 3D force graph

See Vis/README.md for complete setup documentation.


πŸ“š Knowledgebase Structure

Core Files

File Purpose Size
LEARNING_LOG.md Continuous discoveries & patterns Growing
_AI_AGENT_PHILOSOPHY.md Mental models & why ~3.5K tokens
_ARFOUNDATION_VFX_KNOWLEDGE_BASE.md AR Foundation + VFX patterns ~15K tokens
_WEBGL_THREEJS_COMPREHENSIVE_GUIDE.md WebGL/Three.js integration ~12K tokens
_PERFORMANCE_PATTERNS_REFERENCE.md Unity & WebGL optimization ~8K tokens
_MASTER_KNOWLEDGEBASE_INDEX.md Navigation & organization ~2K tokens

Topics Covered

Unity XR:

  • AR Foundation 6.x (plane detection, image tracking, meshing)
  • ARKit & ARCore platform-specific features
  • Human segmentation, body tracking, face tracking
  • XR Interaction Toolkit patterns

VFX & Performance:

  • GPU-instanced particles (Quest 2/3 optimized)
  • Visual Effect Graph best practices
  • Shader optimization patterns
  • Cross-platform performance targets

WebGL Integration:

  • Unity β†’ Three.js bridges
  • WebXR compatibility
  • Performance considerations
  • Asset pipeline

GitHub Resources:

  • Curated high-quality XR repositories
  • Example projects & demos
  • Community tools & libraries

Searching the Knowledgebase

# Find performance-related content
rg -i "performance|optimization|fps" KnowledgeBase/

# Find Unity-specific patterns
rg -i "unity|arfoundation|xr" KnowledgeBase/

# Search by project
rg "Portals_6|Paint-AR" KnowledgeBase/

# View recent discoveries
tail -n 100 KnowledgeBase/LEARNING_LOG.md

πŸ”§ Monitoring & Maintenance

Health Dashboard

Quick check (<3 seconds):

ai-system-monitor.sh --quick

Full audit (~10 seconds):

ai-system-monitor.sh --full

Auto-heal issues:

ai-system-monitor.sh --fix

Security Audit

kb-security-audit.sh

Checks for:

  • Sensitive data patterns (API keys, passwords)
  • File permissions (world-writable files)
  • Symlink integrity
  • Git status & remote configuration

πŸ› οΈ KB Management Tools

Easy manual and automatic additions to the knowledgebase with built-in auditing.

kb-add - Easy Additions

Add patterns, insights, and discoveries to your knowledgebase in seconds:

# Add patterns (reusable solutions)
kb-add --pattern "Use symlinks for cross-tool KB access"

# Add insights (mental models)
kb-add --insight "Token optimization: separate philosophy from protocols"

# Quick daily notes
kb-add --quick "Quest 2 needs 90 FPS for smooth hand tracking"

# Auto-extract from git commits
kb-add --auto-git

# Interactive mode (guided)
kb-add -i

# Create new KB file with template
kb-add --file unity-xr-tips.md -i

Quick aliases (load with source ~/.local/bin/kb-aliases.sh):

kb-p "pattern"       # Add pattern
kb-i "insight"       # Add insight
kb-a "antipattern"   # Add anti-pattern
kb-quick "note"      # Quick note
kb-auto              # Auto-extract from git

kb-audit - Health Check

Comprehensive knowledgebase audit with metrics, recommendations, and security:

# Quick audit (5 seconds)
kb-audit --quick

# Full audit with recommendations (15 seconds)
kb-audit --full

# Security scan only
kb-audit --security

# Metrics only
kb-audit --metrics

# Health score only
kb-audit --health

Example output:

━━━ KB Quick Audit ━━━

Metrics:
  Files: 37 total, 37 this week
  Size: 1.05MB
  Learning entries: 9
  Git commits: 3

Health Score: 100/100 (Excellent)

Health score ranges:

  • 90-100: Excellent ⭐
  • 70-89: Good βœ“
  • 50-69: Needs improvement ⚠️
  • <50: Critical issues ❌

Full audit includes:

  1. Metrics (file counts, size, growth rate)
  2. Security (sensitive data scan, permissions)
  3. Health score (overall rating)
  4. Recommendations (prioritized improvements)
  5. File analysis (recent additions, largest files)

Quick Workflows

Daily pattern extraction (30 seconds):

kb-check              # Quick health check
kb-auto               # Extract from git
kb-i "Your insight"   # Add manual insights

Weekly full audit (5 minutes):

kb-full --report ~/Desktop/kb-audit-$(date +%Y%m%d).md
# Review recommendations
kb-commit             # Commit changes

Post-session reflection (2 minutes):

kb-p "Pattern discovered"
kb-i "Insight about system"
kb-check

See KB_TOOLS_REFERENCE.md for complete documentation.


πŸ’‘ Usage Examples

Example 1: Starting a New Unity XR Project

# 1. Access AR Foundation knowledge
cat KnowledgeBase/_ARFOUNDATION_VFX_KNOWLEDGE_BASE.md

# 2. Check platform compatibility
rg "Quest 2|Quest 3" KnowledgeBase/_PERFORMANCE_PATTERNS_REFERENCE.md

# 3. Find example projects
cat KnowledgeBase/_MASTER_GITHUB_REPO_KNOWLEDGEBASE.md

Example 2: Optimizing VFX Performance

# 1. Search for performance patterns
rg -i "gpu instancing|particle" KnowledgeBase/

# 2. Check Quest-specific optimizations
rg "Quest.*fps|90 fps" KnowledgeBase/

# 3. Log discoveries
echo "## $(date +%Y-%m-%d) - VFX Optimization Discovery
**Context**: Optimizing particles for Quest 2
**Discovery**: GPU instancing reduced draw calls by 80%
**Pattern**: Use Graphics.DrawMeshInstanced for >100 particles
**ROI**: 15ms β†’ 3ms frame time
" >> KnowledgeBase/LEARNING_LOG.md

Example 3: AI-Assisted Development

Activate AI Agent directive:

> "Apply AI Agent Core Directive: Check knowledgebase for AR Foundation
  patterns, focus on highest-leverage approach, explain trade-offs."

When stuck:

> "Emergency override: simplest solution for hand tracking on Quest 3?
  Who solved this already?"

End of session:

> "Extract 2-3 patterns for LEARNING_LOG.md. What automation
  opportunities exist?"

🀝 Contributing

Adding to Knowledgebase

When to add:

  • βœ… Novel patterns discovered
  • βœ… Performance optimizations found
  • βœ… Platform-specific workarounds
  • βœ… GitHub repos that solve real problems
  • βœ… Reusable code patterns

When NOT to add:

  • ❌ Routine tasks with no new learning
  • ❌ Temporary/session-specific info
  • ❌ Already documented elsewhere
  • ❌ Personal notes

Format for LEARNING_LOG.md

## YYYY-MM-DD - [Tool Name] - [Brief Title]

**Discovery**: [What was learned/discovered]

**Context**: [What prompted this, what problem was solved]

**Pattern**: [Reusable approach]

**Future Application**: [Where else can this apply?]

**ROI**: [Time saved / leverage gained]

---

πŸ“ˆ Success Metrics

Per Session

  • Leverage ratio: Hours saved / invested (target: >3:1)
  • Insights extracted: (target: β‰₯2)
  • Automations identified: (target: β‰₯1)

Per Month

  • Speed: 2x faster than last month?
  • Patterns reused: β‰₯5?
  • Complexity: Decreasing?

Per Quarter

  • Capability multiplier: β‰₯3 new capabilities unlocked
  • Time freedom: β‰₯20 hours gained through automation
  • Mastery progression: β‰₯1 skill level increase

πŸ“„ License

MIT License - See LICENSE for details


πŸ”— Links


πŸ“ Recent Updates

2026-01-13 - Intelligence Pattern Libraries & Memory System

  • βœ… Intelligence Pattern Libraries (NEW):
    • _UNITY_PATTERNS_BY_INTEREST.md - Brushes, hand tracking, audio reactive, LiDAR (459 lines)
    • _WEBGL_INTELLIGENCE_PATTERNS.md - WebGPU, Three.js, R3F, GLSL (548 lines)
    • _3DVIS_INTELLIGENCE_PATTERNS.md - Sorting, clustering, anomaly detection (698 lines)
    • Activation phrases added to GLOBAL_RULES.md (REQUIRED for all projects)
  • βœ… MCP Memory/Knowledge Graph:
    • Location verified: ~/Applications/claude_memory.json (42KB, 99+ entities)
    • New entities added: Unity_Intelligence_Patterns, WebGL_Intelligence_Patterns, 3DVis_Intelligence_Patterns
    • Documentation updated: _GLOBAL_RULES_AND_MEMORY.md
  • βœ… GitHub repos extracted:
    • Open Brush (GeometryPool, GeniusParticlesBrush patterns)
    • Operation Swarm (WebGPU 400K+ particles)
    • HandPoseBarracuda (gesture recognition)

2026-01-13 (Earlier) - Project Organization & Vis Folder

  • βœ… Vis/ folder created: Centralized 10 visualization frontends
    • xrai-kg, HOLOVIS, cosmos-*, WarpDashboard, chalktalk-master
    • Comprehensive Vis/README.md with setup docs sorted by date
  • βœ… KnowledgeBase cleanup:
    • Moved 35 files to _scraps/ (aliases, dated reports, old docs)
    • Now 78+ active MD files with clear organization
    • Created _PROJECT_CONFIG_REFERENCE.md documenting all configs
  • βœ… Scripts organized:
    • Moved 19 experimental scripts to Scripts/scraps/
    • Kept core build scripts (build_ios.sh, deploy_ios.sh, install.sh)
  • βœ… VFX25 patterns extracted: _VFX25_HOLOGRAM_PORTAL_PATTERNS.md
    • BodyPixSentis, MetavidoVFX, Rcam4, Portal stencil patterns

2026-01-08 - KB Management Tools Added

  • βœ… kb-add: Easy manual/automatic KB additions
  • βœ… kb-audit: Comprehensive health check with metrics
  • βœ… Shell aliases for rapid access (kb-p, kb-i, kb-check, etc.)

2026-01-08 - Initial Release

  • βœ… AI Agent Intelligence Amplification System (V3 ultra-compact)
  • βœ… Token optimization: 9.3K overhead (26% reduction)
  • βœ… Security audit passed
  • βœ… Monitoring tools (health dashboard, security scanner)
  • βœ… Full spec-kit compliance

πŸ™ Acknowledgments

AI Agent philosophy based on:

  • Naval Ravikant (leverage thinking)
  • Elon Musk (first principles reasoning)
  • Jeff Bezos (long-term compounding)

Knowledge contributions from:

  • Unity XR AI community
  • AR Foundation developers
  • Open source XR projects

Built with:

  • Claude Sonnet 4.5 (AI pair programming)
  • GitHub spec-kit (specification format)
  • State-of-the-art 2026 best practices

Made with ❀️ for the Unity XR community

Permanent intelligence amplification infrastructure for faster learning and execution.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •