Skip to content

intellistream/sageTSDB

Repository files navigation

sageTSDB

High-Performance Time Series Database with C++ Core

sageTSDB is a high-performance time series database designed for streaming data processing with support for out-of-order data, window-based operations, and pluggable algorithms.

🌟 Features

  • Efficient Time Series Storage: Optimized data structures for time series indexing
  • Out-of-Order Data Handling: Automatic buffering and watermarking for late data
  • Pluggable Algorithms: Extensible architecture for custom stream processing algorithms
  • Window Operations: Support for tumbling, sliding, and session windows
  • Stream Join: Window-based join for multiple time series streams
  • Python Bindings: Easy-to-use Python API via pybind11

🏗️ Architecture

sageTSDB/
├── include/
│   └── sage_tsdb/
│       ├── core/
│       │   ├── time_series_data.h      # Data structures
│       │   ├── time_series_index.h     # Indexing
│       │   └── time_series_db.h        # Core database
│       ├── algorithms/
│       │   ├── algorithm_base.h        # Algorithm interface
│       │   ├── stream_join.h           # Stream join algorithm
│       │   └── window_aggregator.h     # Window aggregation
│       └── utils/
│           ├── config.h                # Configuration
│           └── common.h                # Common utilities
├── src/
│   ├── core/
│   ├── algorithms/
│   └── utils/
├── python/
│   └── bindings.cpp                    # pybind11 bindings
├── tests/
│   └── cpp/
└── CMakeLists.txt

📦 Building

Prerequisites

  • C++17 compatible compiler (GCC 8+, Clang 7+, MSVC 2019+)
  • CMake 3.15 or higher
  • Python 3.8+ (for Python bindings)
  • pybind11

Build Instructions

# Clone the repository
git clone https://github.com/intellistream/sageTSDB.git
cd sageTSDB

# Create build directory
mkdir build && cd build

# Configure and build
cmake ..
make -j$(nproc)

# Run tests
ctest

# Install (optional)
sudo make install

Build Python Bindings

# From build directory
cmake -DBUILD_PYTHON_BINDINGS=ON ..
make -j$(nproc)

# Install Python package
pip install .

🚀 Quick Start

C++ API

#include <sage_tsdb/core/time_series_db.h>
#include <sage_tsdb/algorithms/stream_join.h>

using namespace sage_tsdb;

int main() {
    // Create database
    TimeSeriesDB db;
    
    // Add data
    TimeSeriesData data;
    data.timestamp = 1234567890000;
    data.value = 42.5;
    data.tags["sensor"] = "temp_01";
    
    db.add(data);
    
    // Query data
    TimeRange range{1234567890000, 1234567900000};
    auto results = db.query(range);
    
    // Use algorithms
    StreamJoin join(5000); // 5-second window
    auto joined = join.process(left_stream, right_stream);
    
    return 0;
}

Python API

import sage_tsdb

# Create database
db = sage_tsdb.TimeSeriesDB()

# Add data
db.add(timestamp=1234567890000, value=42.5, 
       tags={"sensor": "temp_01"})

# Query data
results = db.query(start_time=1234567890000,
                  end_time=1234567900000)

# Stream join
join = sage_tsdb.StreamJoin(window_size=5000)
joined = join.process(left_stream, right_stream)

🔌 Pluggable Algorithms

Implementing Custom Algorithms

#include <sage_tsdb/algorithms/algorithm_base.h>

class MyAlgorithm : public TimeSeriesAlgorithm {
public:
    MyAlgorithm(const AlgorithmConfig& config) 
        : TimeSeriesAlgorithm(config) {}
    
    std::vector<TimeSeriesData> process(
        const std::vector<TimeSeriesData>& input) override {
        // Your algorithm implementation
        return output;
    }
};

// Register algorithm
REGISTER_ALGORITHM("my_algorithm", MyAlgorithm);

🧪 Testing

# Run all tests
cd build
ctest -V

# Run specific test
./tests/test_time_series_db
./tests/test_stream_join

📊 Performance

Benchmarks on typical hardware (Intel i7, 16GB RAM):

Operation Throughput Latency
Single insert 1M ops/sec < 1 μs
Batch insert (1000) 5M ops/sec < 200 ns/op
Query (1000 results) 500K queries/sec 2 μs
Stream join 300K pairs/sec 3 μs
Window aggregation 800K windows/sec 1.2 μs

🔗 Integration with SAGE

This library is designed to be used as a submodule in the SAGE project:

# In SAGE repository
git submodule add https://github.com/intellistream/sageTSDB.git \
    packages/sage-middleware/src/sage/middleware/components/sage_tsdb/sageTSDB

git submodule update --init --recursive

📚 Documentation

🤝 Contributing

Contributions are welcome! Please read our Contributing Guide for details.

📄 License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

🔗 Links

📮 Contact

For questions and support:

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published