Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -134,17 +134,16 @@ def generate_samples_for_feature_spec(feature_specs, num_samples, ragged=False):
all_features.append(features)
all_feature_weights.append(feature_weights)
else:
features = []
feature_weights = []
for _ in range(num_samples):
num_ids = np.random.randint(1, 32)
ids = np.random.randint(
table_spec.vocabulary_size,
size=(num_ids,),
dtype=np.int32,
)
features.append(ids)
feature_weights.append(np.ones((num_ids,), dtype=np.float32))
counts = np.random.randint(1, 32, size=num_samples)
total_ids = np.sum(counts)
ids_flat = np.random.randint(
table_spec.vocabulary_size,
size=(total_ids,),
dtype=np.int32,
)
split_indices = np.cumsum(counts)[:-1]
features = np.split(ids_flat, split_indices)
feature_weights = [np.ones((c,), dtype=np.float32) for c in counts]
all_features.append(np.array(features, dtype=object))
all_feature_weights.append(np.array(feature_weights, dtype=object))
return all_features, all_feature_weights
Expand All @@ -160,16 +159,17 @@ def generate_sparse_coo_inputs_for_feature_spec(

for feature_spec in feature_specs:
table_spec = feature_spec.table_spec
indices_tensors = []
values_tensors = []
for i in range(num_samples):
num_ids = np.random.randint(1, 32)
for j in range(num_ids):
indices_tensors.append([i, j])
for _ in range(num_ids):
values_tensors.append(np.random.randint(table_spec.vocabulary_size))
all_indices_tensors.append(np.array(indices_tensors, dtype=np.int64))
all_values_tensors.append(np.array(values_tensors, dtype=np.int32))
counts = np.random.randint(1, 32, size=num_samples)
total_ids = np.sum(counts)
values = np.random.randint(
table_spec.vocabulary_size, size=total_ids, dtype=np.int32
)
row_indices = np.repeat(np.arange(num_samples), counts)
col_indices = np.concatenate([np.arange(c) for c in counts])
indices = np.stack([row_indices, col_indices], axis=1)

all_indices_tensors.append(indices.astype(np.int64))
all_values_tensors.append(values)
all_dense_shape_tensors.append(
np.array([num_samples, vocab_size], dtype=np.int64)
)
Expand Down
Loading