Skip to content

in-distribution results #15

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 2 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
123 changes: 123 additions & 0 deletions fine-tuning/evaluate_fine_tuned_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
import argparse
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from sklearn.metrics import accuracy_score, precision_recall_fscore_support

def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
acc = accuracy_score(labels, preds)
return {
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall
}

def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, required=True, help='Path to the model')
parser.add_argument('--dataset_path', type=str, required=True, help='Path to the dataset')
parser.add_argument('--tokenize_version', type=int, choices=[1, 2, 3, 4], required=True, help='Select which tokenize function to use: 1, 2, 3, or 4')
args = parser.parse_args()

# Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)

# Define the tokenize function based on the version
def tokenize_v1(samples):
concatenated_text = samples['problem'] + samples['answer']
result = tokenizer(
concatenated_text,
truncation=True,
max_length=512,
padding=False,
return_tensors=None,
)
result["labels"] = result["input_ids"].copy()
return result

def tokenize_v2(samples):
concatenated_text = samples['problem'] + samples['answer']
result = tokenizer(
concatenated_text,
truncation=True,
max_length=512,
padding=False,
return_tensors=None,
)
problem_tokens = tokenizer(samples['problem'], truncation=True, max_length=512, padding=False, return_tensors=None)["input_ids"]
answer_tokens = tokenizer(samples['answer'], truncation=True, max_length=512, padding=False, return_tensors=None)["input_ids"]
answer_start_idx = len(problem_tokens)
labels = [-100] * len(result["input_ids"])
labels[answer_start_idx:answer_start_idx + len(answer_tokens)] = result["input_ids"][answer_start_idx:answer_start_idx + len(answer_tokens)]
result["labels"] = labels
return result

def tokenize_v3(samples):
concatenated_text = samples['problem'] + samples['answer'] + samples['type']
result = tokenizer(
concatenated_text,
truncation=True,
max_length=512,
padding=False,
return_tensors=None,
)
result["labels"] = result["input_ids"].copy()
return result

def tokenize_v4(samples):
QPROMPT = "You are an expert software developer who writes high quality code. With below information, please either generate Python3 code (Respond directly with code only with markdown), or ask clarifying questions:\n"
if samples['type'] == "Original":
APROMPT = "This is a clear problem requiring no clarifications. Let's generate the required Python3 code directly in markdown."
else:
APROMPT = "I have a few clarifying questions. Please respond with the necessary details so I can assist further."
concatenated_text = f"{QPROMPT} {samples['problem']}" + f"{APROMPT} {samples['answer']}"
result = tokenizer(
concatenated_text,
truncation=True,
max_length=2048,
padding=False,
return_tensors=None,
)
result["labels"] = result["input_ids"].copy()
return result

if args.tokenize_version == 1:
tokenize_fn = tokenize_v1
elif args.tokenize_version == 2:
tokenize_fn = tokenize_v2
elif args.tokenize_version == 3:
tokenize_fn = tokenize_v3
elif args.tokenize_version == 4:
tokenize_fn = tokenize_v4

# Load the dataset
data = load_dataset('json', data_files=args.dataset_path)
tokenized_data = data.map(tokenize_fn)
val_dataset = tokenized_data['train'].train_test_split(test_size=0.2, seed=42)['test']

# Define the Trainer
training_args = TrainingArguments(
per_device_eval_batch_size=16,
output_dir='./results',
logging_dir='./logs',
)

trainer = Trainer(
model=model,
args=training_args,
eval_dataset=val_dataset,
compute_metrics=compute_metrics,
)

# Evaluate the model
results = trainer.evaluate()
print(results)

if __name__ == "__main__":
main()