The Phys-Agent is a physics research assistant MCP server for the TSMC CareerHack project. It enables AI assistants to search ArXiv, ingest physics papers, and answer questions with citations.
# Install all dependencies
pip install -r requirements.txtpython mcp_server.pypython test_run.pyAdd the following to your .vscode/mcp.json or MCP settings file:
{
"servers": {
"physics-agent": {
"command": "python",
"args": ["/home/itzu/phys-expert/mcp_server.py"]
}
}
}Or for the Antigravity settings format:
{
"physics-agent": {
"command": "python",
"args": ["/home/itzu/phys-expert/mcp_server.py"]
}
}| Tool | Description |
|---|---|
add_knowledge_topic(topic) |
Downloads and studies physics papers from ArXiv on a topic |
consult_physics_expert(question) |
Queries the knowledge base with formatted citations |
verify_source(paper_id) |
Retrieves full paper details for citation verification |
get_knowledge_stats() |
Returns database statistics |
User: How does Lambertian reflectance affect lighting estimation?
AI: [Calls add_knowledge_topic("Lambertian reflectance lighting")]
[Calls consult_physics_expert("Lambertian reflectance lighting estimation")]
Based on the physics literature, Lambertian reflectance...
Sources:
[1] Paper Title, Page 5 (arXiv:2xxx.xxxxx)
phys-expert/
├── physics_knowledge_db.py # Core knowledge base class
├── mcp_server.py # MCP server interface
├── test_run.py # Test script
├── requirements.txt # Dependencies
├── README.md # This file
└── db/ # ChromaDB persistent storage