Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
460 changes: 460 additions & 0 deletions assist/server/adk_agents.py

Large diffs are not rendered by default.

251 changes: 251 additions & 0 deletions assist/server/adk_orchestrator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
"""
ADK (Agent Development Kit) orchestrator for conversation processing
"""

import asyncio
import logging
from typing import List, Dict, Any, Optional
from datetime import datetime
import json

logger = logging.getLogger(__name__)

class ADKOrchestrator:
def __init__(self, memory_store):
self.memory_store = memory_store
self.active_sessions: Dict[str, Dict] = {}
self.processing_queue = asyncio.Queue()
self.is_running = False

# Initialize processing tasks
self.tasks = {
'transcriber': self._transcriber_task,
'summarizer': self._summarizer_task,
'action_planner': self._action_planner_task,
'relationship_miner': self._relationship_miner_task,
'memory_writer': self._memory_writer_task
}

async def start(self):
"""Start the ADK orchestrator"""
if self.is_running:
return

self.is_running = True

# Start all processing tasks
for task_name, task_func in self.tasks.items():
asyncio.create_task(self._run_task(task_name, task_func))

logger.info("ADK orchestrator started")

async def stop(self):
"""Stop the ADK orchestrator"""
self.is_running = False
logger.info("ADK orchestrator stopped")

async def _run_task(self, task_name: str, task_func):
"""Run a specific processing task"""
while self.is_running:
try:
# Get next item from queue
item = await asyncio.wait_for(self.processing_queue.get(), timeout=1.0)

# Process with specific task
await task_func(item)

except asyncio.TimeoutError:
continue
except Exception as e:
logger.error(f"Error in {task_name} task: {e}")

async def process_audio_chunk(self, audio_frames: List[float], connection_id: str):
"""Process audio chunk through the pipeline"""
try:
# Create processing item
item = {
'type': 'audio_chunk',
'data': audio_frames,
'connection_id': connection_id,
'timestamp': datetime.utcnow().isoformat()
}

# Add to processing queue
await self.processing_queue.put(item)

except Exception as e:
logger.error(f"Failed to process audio chunk: {e}")

async def process_video_frame(self, frame_data: bytes, connection_id: str):
"""Process video frame through the pipeline"""
try:
# Create processing item
item = {
'type': 'video_frame',
'data': frame_data,
'connection_id': connection_id,
'timestamp': datetime.utcnow().isoformat()
}

# Add to processing queue
await self.processing_queue.put(item)

except Exception as e:
logger.error(f"Failed to process video frame: {e}")

async def _transcriber_task(self, item: Dict[str, Any]):
"""Transcriber task - converts audio to text"""
try:
if item['type'] == 'audio_chunk':
# In a real implementation, this would use speech recognition
# For now, we'll simulate transcription
transcript = await self._simulate_transcription(item['data'])

if transcript:
# Store transcript
await self.memory_store.store_utterance({
'text': transcript,
'timestamp': item['timestamp'],
'connection_id': item['connection_id'],
'type': 'transcript'
})

logger.info(f"Transcribed: {transcript[:50]}...")

except Exception as e:
logger.error(f"Transcriber task error: {e}")

async def _summarizer_task(self, item: Dict[str, Any]):
"""Summarizer task - creates conversation summaries"""
try:
if item['type'] == 'audio_chunk':
# Get recent utterances for summarization
recent_utterances = await self.memory_store.get_recent_utterances(limit=5)

if len(recent_utterances) >= 3: # Summarize when we have enough content
summary = await self._generate_summary(recent_utterances)

if summary:
await self.memory_store.store_memory({
'type': 'summary',
'content': summary,
'timestamp': item['timestamp'],
'connection_id': item['connection_id']
})

logger.info(f"Generated summary: {summary[:50]}...")

except Exception as e:
logger.error(f"Summarizer task error: {e}")

async def _action_planner_task(self, item: Dict[str, Any]):
"""Action planner task - extracts action items"""
try:
if item['type'] == 'audio_chunk':
# Get recent utterances for action extraction
recent_utterances = await self.memory_store.get_recent_utterances(limit=10)

if recent_utterances:
actions = await self._extract_actions(recent_utterances)

for action in actions:
await self.memory_store.store_action({
'description': action['description'],
'owner': action.get('owner', 'unknown'),
'due_hint': action.get('due_hint'),
'status': 'pending',
'timestamp': item['timestamp'],
'connection_id': item['connection_id']
})

logger.info(f"Extracted action: {action['description']}")

except Exception as e:
logger.error(f"Action planner task error: {e}")

async def _relationship_miner_task(self, item: Dict[str, Any]):
"""Relationship miner task - identifies relationships between people"""
try:
if item['type'] == 'audio_chunk':
# Get recent utterances for relationship mining
recent_utterances = await self.memory_store.get_recent_utterances(limit=20)

if recent_utterances:
relationships = await self._extract_relationships(recent_utterances)

for relationship in relationships:
await self.memory_store.store_relationship({
'person1': relationship['person1'],
'person2': relationship['person2'],
'relationship_type': relationship['type'],
'evidence': relationship['evidence'],
'timestamp': item['timestamp'],
'connection_id': item['connection_id']
})

logger.info(f"Extracted relationship: {relationship['person1']} - {relationship['person2']}")

except Exception as e:
logger.error(f"Relationship miner task error: {e}")

async def _memory_writer_task(self, item: Dict[str, Any]):
"""Memory writer task - persists memories to long-term storage"""
try:
# This task handles the final persistence of processed data
# It ensures all memories are properly stored and indexed

if item['type'] == 'audio_chunk':
# Update session information
session_id = item['connection_id']
if session_id not in self.active_sessions:
self.active_sessions[session_id] = {
'start_time': item['timestamp'],
'utterance_count': 0,
'last_activity': item['timestamp']
}

self.active_sessions[session_id]['utterance_count'] += 1
self.active_sessions[session_id]['last_activity'] = item['timestamp']

# Persist session data
await self.memory_store.update_session(session_id, self.active_sessions[session_id])

except Exception as e:
logger.error(f"Memory writer task error: {e}")

async def _simulate_transcription(self, audio_frames: List[float]) -> Optional[str]:
"""Simulate audio transcription"""
# In a real implementation, this would use speech recognition
# For now, return a placeholder
return "This is a simulated transcription of the audio content."

async def _generate_summary(self, utterances: List[Dict]) -> Optional[str]:
"""Generate conversation summary"""
# In a real implementation, this would use AI summarization
# For now, return a placeholder
return "This is a simulated summary of the conversation."

async def _extract_actions(self, utterances: List[Dict]) -> List[Dict]:
"""Extract action items from utterances"""
# In a real implementation, this would use AI to extract actions
# For now, return placeholder actions
return [
{
'description': 'Follow up on the discussed topic',
'owner': 'user',
'due_hint': 'next week'
}
]

async def _extract_relationships(self, utterances: List[Dict]) -> List[Dict]:
"""Extract relationships from utterances"""
# In a real implementation, this would use AI to extract relationships
# For now, return placeholder relationships
return [
{
'person1': 'Alice',
'person2': 'Bob',
'type': 'colleague',
'evidence': 'mentioned working together'
}
]
Loading