Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion medutils/optimization/base_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,13 @@ def solve(self, f, max_iter):
raise NotImplementedError

class BaseReconOptimizer(BaseOptimizer):
def __init__(self, A, AH, mode, lambd, beta=None, tau=None):
def __init__(self, A, AH, mode, lambd, K=None, KT=None, beta=None, tau=None):
'''
:param K: expected to be a lamdba function, e.g. K = lambda x, beta, mode: Nabla(mode=mode, beta=beta).forward(x)
:param KT: expected to be a lamdba function, e.g. KT = lambda x, beta, mode: NablaT(mode=mode, beta=beta).forward(x)
'''
self.A = A
self.AH = AH
self.K = K
self.KT = KT
super().__init__(mode, lambd, beta, tau)
21 changes: 11 additions & 10 deletions medutils/optimization_th/recon_optimizer_th.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
import tqdm
import torch
import numpy as np
from functools import partial

class TVReconOptimizer(BaseReconOptimizer):
""" Total Variation
Expand All @@ -24,14 +25,14 @@ class TVReconOptimizer(BaseReconOptimizer):
"""
def solve(self, y, max_iter):
# setup operators
K = Nabla(self.mode, self.beta)
KT = NablaT(self.mode, self.beta)
K = Nabla(self.mode, self.beta) if self.K is None else partial(self.K, mode=self.mode, beta=self.beta)
KT = NablaT(self.mode, self.beta) if self.KT is None else partial(self.KT, mode=self.mode, beta=self.beta)

A = self.A
AH = self.AH

# setup constants
L = K.L
L = Nabla(self.mode, self.beta).L # ToDo: Adjust to input K
if self.tau != None:
tau = self.tau
else:
Expand Down Expand Up @@ -86,7 +87,7 @@ def __init__(self, A, AH, mode, lambd, alpha0, alpha1, beta=None):
self.alpha1 = alpha1

def solve(self, y, max_iter):
# setup operators
# setup operator # ToDo: Adapt to custom operators
K = Nabla(self.mode, self.beta)
KT = NablaT(self.mode, self.beta)
E = NablaSym(self.mode, self.beta)
Expand Down Expand Up @@ -168,11 +169,11 @@ def __init__(self, A, AH, mode, lambd, alpha1, s, beta1=None, beta2=None):
self.beta2 = beta2

def solve(self, y, max_iter):
# setup operators
K_beta1 = Nabla(self.mode, self.beta1)
KT_beta1 = NablaT(self.mode, self.beta1)
K_beta2 = Nabla(self.mode, self.beta2)
KT_beta2 = NablaT(self.mode, self.beta2)
# setup operators # ToDo: Adapt to custom operators
K_beta1 = Nabla(self.mode, self.beta1) if self.K is None else partial(self.K, mode=self.mode, beta=self.beta1)
KT_beta1 = NablaT(self.mode, self.beta1) if self.KT is None else partial(self.KT, mode=self.mode, beta=self.beta1)
K_beta2 = Nabla(self.mode, self.beta2) if self.K is None else partial(self.KT, mode=self.mode, beta=self.beta2)
KT_beta2 = NablaT(self.mode, self.beta2) if self.KT is None else partial(self.KT, mode=self.mode, beta=self.beta2)

A = self.A
AH = self.AH
Expand Down Expand Up @@ -266,7 +267,7 @@ def __init__(self, A, AH, mode, lambd, alpha0, alpha1, s, beta1=None, beta2=None
self.beta2 = beta2

def solve(self, y, max_iter):
# setup operators
# setup operators # ToDo: Adapt to custom operators
K_beta1 = Nabla(self.mode, self.beta1)
KT_beta1 = NablaT(self.mode, self.beta1)
E_beta1 = NablaSym(self.mode, self.beta1)
Expand Down