Skip to content

Repo for SIGSPATIAL2023 paper "Modeling Spatially Varying Physical Dynamics for Spatiotemporal Predictive Learning"

Notifications You must be signed in to change notification settings

knowledge-computing/svpnet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SVPNet - Modeling Spatially Varying Physical Dynamics for Spatiotemporal Predictive Learning

Paper

Goal - Predict future frames conditioned on previous frames

Data

Moving MNIST+

TaxiBJ

Sea Surface Temperature

Turbulent

Running the code

  • To train SVPNet on Moving MNIST+, run python train.py --data_source moving_mnist_3_tr2_ro1 --seq_len 4 --horizon 8 --model_name svpnet --batch_size 64 --gpu_id 0 --lr 0.001 --num_layers 3 --result_root ./results --num_epochs 150 --tau 3

  • To train SVPNet on TaxiBJ, run python train.py --data_source taxibj --seq_len 4 --horizon 4 --model_name svpnet --batch_size 64 --gpu_id 0 --lr 0.0005 --num_layers 3 --result_root ./results --num_epochs 150 --tau 3

  • To train SVPNet on Sea Surface Temperature, run python train.py --data_source sst --seq_len 4 --horizon 6 --model_name svpnet --batch_size 64 --gpu_id 0 --lr 0.001 --num_layers 3 --result_root ./results --num_epochs 150 --tau 3

  • To train SVPNet on Turbulent, run python train.py --data_source turbulent --seq_len 10 --horizon 10 --model_name svpnet --batch_size 64 --gpu_id 0 --lr 0.001 --num_layers 3 --result_root ./results --num_epochs 150 --tau 3

  • To test SVPNet, run python test.py --data_source [DATA_SOURCE] --model [MODEL] --result_path [RESULT_PATH] --gpu_id 0

    • DATA_SOURCE: Choose from [moving_mnist_3_tr2_ro1 | sst | taxibj | turbulent]
    • MODEL: The model folder generated during training
    • RESULT_PATH: The path for the model

About

Repo for SIGSPATIAL2023 paper "Modeling Spatially Varying Physical Dynamics for Spatiotemporal Predictive Learning"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published