- http://lapis-zero09.hatenablog.com/entry/2018/03/21/234500
- Li, N. and Zhou, Z.-H.: Selective Ensemble under Regularization Framework, Proc. MCS, pp. 293–303 (2009).
- https://link.springer.com/chapter/10.1007/978-3-642-02326-2_30
-
train_test_split→data/data_n/以下に保存 n:0-4- 最終的な評価のための5fold
Input: all.dataOutput: data_n/X_test.npy X_train.npy y_test.npy y_train.npy
-
1のtrainデータを5分割regularized selective ensembleのlambda決定のための5foldtrain_test_split→data/data_n/fold_n以下に保存 n:0-4Input: data_n/X_test.npy X_train.npy y_test.npy y_train.npyOutput: data_n/fold_n/X_test.npy X_train.npy y_test.npy y_train.npy
-
アンサンブル候補モデルの予測を保存
regularized selective ensembleのlambda決定のための5foldInput: data_n/fold_n/X_test.npy X_train.npy y_test.npy y_train.npyOutput: data_n/fold_n/predictions.csv truelabel.csv
-
アンサンブル候補モデルの予測を保存
3と同じモデル群であることInput: data_n/X_test.npy X_train.npy y_test.npy y_train.npyOutput: data_n/predictions.csv truelabel.csv
-
get_kernel_link_matrix.py実行- fold毎の
w_linkの計算 - data毎の
w_linkの計算 Input: data_n/fold_n/X_test.npy data_n/X_test.npyOutput: data_n/w_link/w_link_n.csv data_n/fold_n/w_link/w_link_n.csv
- fold毎の
-
nohup echo " weight_for_train_data()" | matlab -nodisplay > weight.out &実行- train に対する
weightの計算 Input: data_n/fold_n/predictions.csv w_link/w_link_n.csvOutput: data_n/fold_n/weight/weight_lambda_n.csv
- train に対する
-
lambda_decision.py実行- data毎の
lambdaの決定 Input: data_n/fold_n/predictions.csv weight/weight_lambda_n.csvOutput: lambda for each data
- data毎の
-
eval "matlab -nodesktop -nosplash -r \"weight_for_test_data($lambda)\" > weight.out"実行- train で決定した
lambdaに対して test に対するweightの計算 Input: data_n/predictions.csv w_link/w_link_n.csvOutput: data_n/weight/weight_lambda_n.csv
- train で決定した
- 結果の確認
result.pyでRSEの結果確認
- mosek: https://www.mosek.com/
- weka: https://www.cs.waikato.ac.nz/ml/weka/
- py4j: https://www.py4j.org/
