Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 32 additions & 12 deletions utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
from skimage.morphology import label
import pandas as pd
import matplotlib.pylab as plt
import cv2


# Base Configuration class
Expand Down Expand Up @@ -58,22 +59,28 @@ class Option(Config):
name = "DSB2018"

# root dir of training and validation set
root_dir = '/home/liming/Documents/dataset/dataScienceBowl2018/combined'
root_dir = '/datasets/dsb2018_nuclei/combined'

# root dir of testing set
test_dir = '/home/liming/Documents/dataset/dataScienceBowl2018/testing_data'
#test_dir = '/home/liming/Documents/dataset/dataScienceBowl2018/testing_data'
test_dir = '/datasets/dsb2018_nuclei/stage1_test'

# save segmenting results (prediction masks) to this folder
results_dir = '/home/liming/Documents/dataset/dataScienceBowl2018/results'
results_dir = '/datasets/dsb2018_nuclei/results'

num_workers = 1 # number of threads for data loading
#modifying for cpu only
batch_size = 1
n_gpu = 0
num_workers = 0

#num_workers = 1 # number of threads for data loading
shuffle = True # shuffle the data set
batch_size = 16 # GTX1060 3G Memory
epochs = 2 # number of epochs to train
#batch_size = 16 # GTX1060 3G Memory
epochs = 2 # number of epochs to train
is_train = True # True for training, False for making prediction
save_model = False # True for saving the model, False for not saving the model

n_gpu = 1 # number of GPUs
#n_gpu = 1 # number of GPUs

learning_rate = 1e-3 # learning rage
weight_decay = 1e-4 # weight decay
Expand Down Expand Up @@ -131,6 +138,8 @@ def prepare_training_data(self):
dest = os.path.join(self.stage1_train_dest, id_)
img = Image.open(os.path.join(path, 'images', id_ + '.png')).convert("RGB")
mask = self.assemble_masks(path)
if not os.path.exists(dest):
os.mkdir(dest)
img.save(os.path.join(dest, 'image.png'))
Image.fromarray(mask).save(os.path.join(dest, 'mask.png'))

Expand Down Expand Up @@ -222,11 +231,22 @@ def encode_and_save(preds_test_upsampled, test_ids):
""" Prepare training data and testing data
read data and overlay masks and save to destination path
"""
stage1_train_src = '/home/liming/Documents/dataset/dataScienceBowl2018/stage1_train'
stage1_train_dest = '/home/liming/Documents/dataset/dataScienceBowl2018/combined'
stage1_test_src = '/home/liming/Documents/dataset/dataScienceBowl2018/stage1_test'
stage1_test_dest = '/home/liming/Documents/dataset/dataScienceBowl2018/testing_data'

stage1_train_src = '/datasets/dsb2018_nuclei/stage1_train'
stage1_train_dest = '/datasets/dsb2018_nuclei/combined'
stage1_test_src = '/datasets/dsb2018_nuclei/stage1_test'
stage1_test_dest = '/datasets/dsb2018_nuclei/testing_data'

path = '/datasets/dsb2018_nuclei/combined/fc22db33a2495f58f118bc182c0087e140df14ccb8dad51373e1a54381f683de/image.png'


# img = cv2.imread(path)
# cv2.imshow('test', img)
# cv2.waitKey()
# img = Image.open(path)
# import pylab
# pylab.figure()
# pylab.show(img)
# pylab.show()
util = Utils(stage1_train_src, stage1_train_dest, stage1_test_src, stage1_test_dest)
util.prepare_training_data()
util.prepare_testing_data()