Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions pylearn2/models/dbm/layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -1524,7 +1524,7 @@ def __init__(self, n_classes, layer_name, irange = None,
assert isinstance(n_classes, py_integer_types)

self.output_space = VectorSpace(n_classes)
self.b = sharedX( np.zeros((n_classes,)), name = 'softmax_b')
self.b = sharedX( np.zeros((n_classes,)), name=layer_name+'_b')

if self.center:
b = self.b.get_value()
Expand Down Expand Up @@ -1624,7 +1624,7 @@ def set_input_space(self, space):
idx = rng.randint(0, self.input_dim)
W[idx, i] = rng.randn() * self.sparse_istdev

self.W = sharedX(W, 'softmax_W' )
self.W = sharedX(W, self.layer_name+'_W' )

self._params = [ self.b, self.W ]

Expand Down
4 changes: 2 additions & 2 deletions pylearn2/models/maxout.py
Original file line number Diff line number Diff line change
Expand Up @@ -1226,14 +1226,14 @@ def handle_pool_shape(idx):
partial_sum=self.partial_sum,
rng=rng)
W, = self.transformer.get_params()
W.name = 'W'
W.name = self.layer_name + '_W'

if self.tied_b:
self.b = sharedX(np.zeros((self.detector_space.num_channels)) +
self.init_bias)
else:
self.b = sharedX(self.detector_space.get_origin() + self.init_bias)
self.b.name = 'b'
self.b.name = self.layer_name + '_b'

logger.info('Input shape: {0}'.format(self.input_space.shape))
logger.info(self.layer_name +
Expand Down
4 changes: 2 additions & 2 deletions pylearn2/models/mlp.py
Original file line number Diff line number Diff line change
Expand Up @@ -1187,7 +1187,7 @@ def __init__(self, n_classes, layer_name, irange=None,
self.output_space = VectorSpace(n_classes)
if not no_affine:
self.b = sharedX(np.zeros((n_classes - self.non_redundant,)),
name='softmax_b')
name=layer_name+'_b')
if init_bias_target_marginals:

y = init_bias_target_marginals.y
Expand Down Expand Up @@ -1331,7 +1331,7 @@ def set_input_space(self, space):
idx = rng.randint(0, self.input_dim)
W[idx, i] = rng.randn()

self.W = sharedX(W, 'softmax_W')
self.W = sharedX(W, self.layer_name+'_W')

self._params = [self.b, self.W]

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,7 @@
" max_kernel_norm: 1.9365\n",
" }, !obj:pylearn2.models.mlp.Softmax {\n",
" max_col_norm: 1.9365,\n",
" layer_name: 'y',\n",
" layer_name: 'softmax',\n",
" n_classes: 10,\n",
" istdev: .05\n",
" }\n",
Expand Down
4 changes: 2 additions & 2 deletions pylearn2/scripts/tutorials/jobman_integration.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@
" dim: 500,\n",
" sparse_init: 15,\n",
" }, !obj:pylearn2.models.mlp.Softmax {\n",
" layer_name: 'y',\n",
" layer_name: 'softmax',\n",
" n_classes: 10,\n",
" irange: 0.\n",
" }\n",
Expand Down Expand Up @@ -100,7 +100,7 @@
" dim: 500,\n",
" sparse_init: 15,\n",
" }, !obj:pylearn2.models.mlp.Softmax {\n",
" layer_name: 'y',\n",
" layer_name: 'softmax',\n",
" n_classes: 10,\n",
" irange: 0.\n",
" }\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -213,7 +213,7 @@
" dim: 500,\n",
" sparse_init: 15,\n",
" }, !obj:pylearn2.models.mlp.Softmax {\n",
" layer_name: 'y',\n",
" layer_name: 'softmax',\n",
" n_classes: 10,\n",
" irange: 0.\n",
" }\n",
Expand Down Expand Up @@ -25405,7 +25405,7 @@
" dim: 1000,\n",
" sparse_init: 15\n",
" }, !obj:pylearn2.models.mlp.Softmax {\n",
" layer_name: 'y',\n",
" layer_name: 'softmax',\n",
" n_classes: 10,\n",
" irange: 0.\n",
" }\n",
Expand Down Expand Up @@ -56634,7 +56634,7 @@
" dim: 500,\n",
" sparse_init: 15\n",
" }, !obj:pylearn2.models.mlp.Softmax {\n",
" layer_name: 'y',\n",
" layer_name: 'softmax',\n",
" n_classes: 10,\n",
" irange: 0.\n",
" }\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1989,7 +1989,7 @@
" },\n",
" !obj:pylearn2.models.mlp.Softmax {\n",
" max_col_norm: 1.9365,\n",
" layer_name: 'y',\n",
" layer_name: 'softmax',\n",
" n_classes: 10,\n",
" irange: .005\n",
" }\n",
Expand Down