Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions lib/Conversion/TorchToTosa/TorchToTosa.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1089,6 +1089,11 @@ class ConvertAtenMultipleDimsReductionOp
for (int64_t i = 0; i < inputRank; i++)
reduceDims.push_back(i);
}
// PyTorch treats an explicit empty list the same as "reduce all dims".
if (reduceDims.empty()) {
for (int64_t i = 0; i < inputRank; i++)
reduceDims.push_back(i);
}

int64_t N = reduceDims.size();
for (unsigned i = 0; i < N; i++) {
Expand Down
12 changes: 11 additions & 1 deletion lib/Conversion/TorchToTosa/TosaLegalizeCommon.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -782,13 +782,23 @@ std::optional<Value> convertReduceOpCommon(

// Optionally squeeze out the reduced axes.
if (!keep_dims) {
auto squeezedType =
RankedTensorType::get(output_shape, reduce_element_type);
auto reshape_op = CreateOpAndInfer<tosa::ReshapeOp>(
rewriter, op->getLoc(), output_type, val,
rewriter, op->getLoc(), squeezedType, val,
tosa::getTosaConstShape(rewriter, op->getLoc(), output_shape));
val = reshape_op.getResult();
}
}

// Ensure the result element type matches the expected output type.
if (val.getType() != output_type) {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Clarification: In what scenarios will this happen? From the added LIT test it seems that this cast wasn't necessary.

auto casted = tosa::tosaCastTensorToType(rewriter, val, output_type);
if (!casted)
return std::nullopt;
val = casted.value();
}

return val;
}

Expand Down
4 changes: 2 additions & 2 deletions projects/pt1/e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -3434,6 +3434,8 @@
"ElementwiseClampMinModule_bfloat16",
"ElementwiseClampModule_bfloat16",
"ElementwiseReluModule_bfloat16",
# torch.onnx.errors.SymbolicValueError: Cannot determine scalar type for this '<class 'torch.TensorType'>'
"ReduceSumEmptyDimListInt8ToInt32Module_basic",
}

if torch_version_for_comparison() < version.parse("2.3.0.dev"):
Expand Down Expand Up @@ -3846,7 +3848,6 @@
"MaxPool3dWithIndicesNonDefaultParamsModule_basic",
"MaxPool3dWithIndicesNonDefaultStrideModule_basic",
"MaxPool3dWithIndicesStaticModule_basic",
"MeanDimEmptyDimModule_basic",
"MlGroupNormManualModule_basic",
"MlGroupNormModule_basic",
"MlLayerNormManualModule_basic",
Expand Down Expand Up @@ -3901,7 +3902,6 @@
"ReduceL3NormKeepDimComplexModule_basic",
"ReduceMaxAlongDimUnsignedInt_basic",
"ReduceMinAlongDimUnsignedInt_basic",
"ReduceSumDimIntListEmptyDimModule_basic",
"RollModule_basic",
"ScalarConstantTupleModule_basic",
"ScalarImplicitFloatModule_basic",
Expand Down
46 changes: 46 additions & 0 deletions projects/pt1/python/torch_mlir_e2e_test/test_suite/reduction.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,52 @@ def ReduceSumDtypeFloatModule_basic(module, tu: TestUtils):
# ==============================================================================


class ReduceSumEmptyDimListInt8ToInt32Module(torch.nn.Module):
def __init__(self):
super().__init__()

@export
@annotate_args(
[
None,
([-1, -1, -1], torch.int8, True),
]
)
def forward(self, a):
return torch.sum(a, dim=[], dtype=torch.int32)


@register_test_case(module_factory=lambda: ReduceSumEmptyDimListInt8ToInt32Module())
def ReduceSumEmptyDimListInt8ToInt32Module_basic(module, tu: TestUtils):
module.forward(tu.randint(3, 4, 5, low=-16, high=16).to(torch.int8))


# ==============================================================================


class ReduceSumEmptyDimListInt8Module(torch.nn.Module):
def __init__(self):
super().__init__()

@export
@annotate_args(
[
None,
([-1, -1, -1], torch.int8, True),
]
)
def forward(self, a):
return torch.sum(a, dim=[])


@register_test_case(module_factory=lambda: ReduceSumEmptyDimListInt8Module())
def ReduceSumEmptyDimListInt8Module_basic(module, tu: TestUtils):
module.forward(tu.randint(3, 4, 5, low=-16, high=16).to(torch.int8))


# ==============================================================================


class ReduceSumElementTypeBoolModule(torch.nn.Module):
def __init__(self):
super().__init__()
Expand Down
23 changes: 23 additions & 0 deletions test/Conversion/TorchToTosa/basic.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -311,6 +311,29 @@ func.func @test_reduce_sum_dims$basic(%arg0: !torch.vtensor<[3,4,5,6],f32>) -> !

// -----

// CHECK-LABEL: func.func @test_reduce_sum_empty_dims$basic(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[2,3,4],f32>) -> !torch.vtensor<[],f32> {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It'll be nice to update the variable names similar to the other PR.

// CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[2,3,4],f32> -> tensor<2x3x4xf32>
// CHECK: %[[VAL_2:.*]] = torch.constant.none
// CHECK: %[[VAL_3:.*]] = torch.prim.ListConstruct : () -> !torch.list<int>
// CHECK: %[[VAL_4:.*]] = tosa.reduce_sum %[[VAL_1]] {axis = 0 : i32} : (tensor<2x3x4xf32>) -> tensor<1x3x4xf32>
// CHECK: %[[VAL_5:.*]] = tosa.reduce_sum %[[VAL_4]] {axis = 1 : i32} : (tensor<1x3x4xf32>) -> tensor<1x1x4xf32>
// CHECK: %[[VAL_6:.*]] = tosa.reduce_sum %[[VAL_5]] {axis = 2 : i32} : (tensor<1x1x4xf32>) -> tensor<1x1x1xf32>
// CHECK: %[[VAL_7:.*]] = tosa.const_shape
// CHECK: %[[VAL_8:.*]] = tosa.reshape %[[VAL_6]], %[[VAL_7]] : (tensor<1x1x1xf32>, !tosa.shape<0>) -> tensor<f32>
// CHECK: %[[VAL_9:.*]] = torch_c.from_builtin_tensor %[[VAL_8]] : tensor<f32> -> !torch.vtensor<[],f32>
// CHECK: return %[[VAL_9]] : !torch.vtensor<[],f32>
// CHECK: }
func.func @test_reduce_sum_empty_dims$basic(%arg0: !torch.vtensor<[2,3,4],f32>) -> !torch.vtensor<[],f32> {
%none = torch.constant.none
%false = torch.constant.bool false
%empty = torch.prim.ListConstruct : () -> !torch.list<int>
%0 = torch.aten.sum.dim_IntList %arg0, %empty, %false, %none : !torch.vtensor<[2,3,4],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[],f32>
return %0 : !torch.vtensor<[],f32>
}

// -----

// CHECK-LABEL: func.func @test_linalg_vector_norm$basic(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[3,151,64],f32>) -> !torch.vtensor<[3,151,1],f32> {
// CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[3,151,64],f32> -> tensor<3x151x64xf32>
Expand Down
Loading