Skip to content

luanyunteng/MSDNet-PyTorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MSDNet-PyTorch

This repository contains the PyTorch implementation of the paper Multi-Scale Dense Networks for Resource Efficient Image Classification

Citation:

@inproceedings{huang2018multi,
    title={Multi-scale dense networks for resource efficient image classification},
    author={Huang, Gao and Chen, Danlu and Li, Tianhong and Wu, Felix and van der Maaten, Laurens and Weinberger, Kilian Q},
    journal={ICLR},
    year={2018}
}

Dependencies:

  • Python3
  • PyTorch >= 0.4.0

Network Configurations

Train an MSDNet (block=7) on CIFAR-100 for anytime prediction:

python3 main.py --data-root /PATH/TO/CIFAR100 --data cifar100 --save /PATH/TO/SAVE \
                --arch msdnet --batch-size 64 --epochs 300 --nBlocks 7 \
                --stepmode even --step 2 --base 4 --nChannels 16 \
                -j 16

Train an MSDNet (block=5) on CIFAR-100 for efficient batch computation:

python3 main.py --data-root /PATH/TO/CIFAR100 --data cifar100 --save /PATH/TO/SAVE \
                --arch msdnet --batch-size 64 --epochs 300 --nBlocks 5 \
                --stepmode lin_grow --step 1 --base 1 --nChannels 16 --use-valid \
                -j 16

Train an MSDNet (block=5, step=4) on ImageNet:


python3 main.py --data-root /PATH/TO/ImageNet --data ImageNet --save /PATH/TO/SAVE \
                --arch msdnet --batch-size 256 --epochs 90 --nBlocks 5 \
                --stepmode even --step 4 --base 4 --nChannels 32 --growthRate 16 \
                --grFactor 1-2-4-4 --bnFactor 1-2-4-4 \
                --use-valid --gpu 0,1,2,3 -j 16 \

Pre-trained MSDNet Models on ImageNet

  1. Download pretrained models and validation indeces on ImageNet.
  2. Test script:
python3 main.py --data-root /PATH/TO/ImageNet --data ImageNet --save /PATH/TO/SAVE \
                --arch msdnet --batch-size 256 --epochs 90 --nBlocks 5 \
                --stepmode even --step 4 --base 4 --nChannels 32 --growthRate 16 \
                --grFactor 1-2-4-4 --bnFactor 1-2-4-4 \
                --evalmode dynamic --evaluate-from /PATH/TO/CHECKPOINT/ \
                --use-valid --gpu 0,1,2,3 -j 16 \

Acknowledgments

We would like to take immense thanks to Danlu Chen, for providing us the prime version of codes.

About

MSDNet

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%