Skip to content

marcoloco23/dimtensor

Repository files navigation

dimtensor

Unit-aware tensors for physics and scientific machine learning

PyPI version Python versions License: MIT Downloads Documentation

Documentation | PyPI | Changelog | Contributing


dimtensor catches dimensional errors at operation time, not after hours of computation.

from dimtensor import DimArray, units

# Operations check dimensions automatically
velocity = DimArray([10, 20, 30], units.m / units.s)
time = DimArray([1, 2, 3], units.s)
distance = velocity * time  # [10 40 90] m

# Errors caught immediately
acceleration = DimArray([9.8], units.m / units.s**2)
velocity + acceleration  # DimensionError: cannot add m/s to m/s^2

Why dimtensor?

Problem Solution
Silent unit errors waste compute time Immediate DimensionError at operation time
PyTorch has no unit support Native DimTensor with full autograd and GPU support
JAX incompatible with unit libraries DimArray registered as pytree for jit/vmap/grad
Uncertainty handled separately Built-in uncertainty propagation through all operations
Units lost during I/O Save/load with units to JSON, HDF5, Parquet, NetCDF

Features

  • Dimensional Safety - Operations between incompatible dimensions raise DimensionError
  • Unit Conversion - Convert between compatible units with .to()
  • NumPy/PyTorch/JAX - Full integration with all three frameworks
  • Physical Constants - CODATA 2022 constants with proper units and uncertainties
  • Uncertainty Propagation - Track and propagate measurement uncertainties
  • I/O Support - JSON, HDF5, Parquet, NetCDF, pandas, xarray
  • Visualization - Matplotlib and Plotly with automatic unit labels
  • Domain Units - Astronomy, chemistry, and engineering units
  • Dimensional Inference - Infer dimensions from variable names and equations
  • Dimensional Linting - Static analysis CLI for finding unit errors
  • Optional Rust Backend - Accelerated operations when built from source

Installation

pip install dimtensor

For framework-specific support:

pip install dimtensor[torch]  # PyTorch integration
pip install dimtensor[jax]    # JAX integration
pip install dimtensor[all]    # All optional dependencies

Optional: Rust Backend (v2.0+)

For improved performance, build the optional Rust backend:

# Install Rust (if not already installed)
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
pip install maturin

# Build and install the Rust extension
cd /path/to/dimtensor/rust
maturin build --release
pip install target/wheels/dimtensor_core-*.whl

The library automatically uses the Rust backend when available, with a pure Python fallback otherwise. Check availability:

from dimtensor._rust import HAS_RUST_BACKEND
print(f"Rust backend: {HAS_RUST_BACKEND}")

Quick Start

NumPy

from dimtensor import DimArray, units

v = DimArray([10], units.m / units.s)  # velocity
t = DimArray([5], units.s)              # time
d = v * t                               # distance = 50 m

PyTorch

import torch
from dimtensor.torch import DimTensor
from dimtensor import units

# Unit-aware tensors with autograd
v = DimTensor(torch.tensor([1.0, 2.0, 3.0], requires_grad=True), units.m / units.s)
t = DimTensor(torch.tensor([0.5, 1.0, 1.5]), units.s)
d = v * t  # distance in meters

# Gradients flow through
d.sum().backward()
print(v.grad)

# GPU support
v_cuda = v.cuda()

JAX

import jax
import jax.numpy as jnp
from dimtensor.jax import DimArray
from dimtensor import units

@jax.jit
def kinetic_energy(mass, velocity):
    return 0.5 * mass * velocity**2

m = DimArray(jnp.array([1.0, 2.0]), units.kg)
v = DimArray(jnp.array([10.0, 20.0]), units.m / units.s)
E = kinetic_energy(m, v)  # JIT-compiled, units preserved: [50. 400.] J

Physical Constants

from dimtensor import constants, DimArray, units

print(constants.c)   # Speed of light: 299792458.0 m/s
print(constants.h)   # Planck constant with uncertainty

E = constants.c**2 * DimArray([1.0], units.kg)  # E = mc^2

Uncertainty Propagation

from dimtensor import DimArray, units

length = DimArray([10.0], units.m, uncertainty=[0.1])
width = DimArray([5.0], units.m, uncertainty=[0.05])

area = length * width  # 50 +/- 0.71 m^2 (propagated in quadrature)

I/O

from dimtensor import DimArray, units
from dimtensor.io import save_json, load_json, save_hdf5, load_hdf5

arr = DimArray([1.0, 2.0, 3.0], units.m)

# JSON
save_json(arr, "data.json")
loaded = load_json("data.json")  # Units preserved

# HDF5
save_hdf5(arr, "data.h5", compression="gzip")
loaded = load_hdf5("data.h5")

Visualization

from dimtensor import DimArray, units
from dimtensor.visualization import plot

time = DimArray([0, 1, 2, 3], units.s)
distance = DimArray([0, 10, 40, 90], units.m)

plot(time, distance)  # Axes labeled automatically: [s], [m]

Domain-Specific Units

from dimtensor import DimArray
from dimtensor.domains.astronomy import parsec, light_year, solar_mass
from dimtensor.domains.chemistry import molar, dalton
from dimtensor.domains.engineering import MPa, hp, kWh

# Astronomy
distance = DimArray([4.24], light_year).to(parsec)  # ~1.3 pc

# Chemistry
concentration = DimArray([0.1], molar)  # 0.1 M

# Engineering
stress = DimArray([250], MPa)
power = DimArray([100], hp)

Dataset Loaders (v3.3.0+)

from dimtensor.loaders import NistCodataLoader, NasaExoplanetLoader, PrismClimateLoader

# Load NIST CODATA 2022 fundamental constants
loader = NistCodataLoader()
constants_df = loader.load()  # Returns DimArrays with units and uncertainties
print(constants_df['speed_of_light'])  # 299792458.0 m/s (exact)

# Load NASA confirmed exoplanets
exo_loader = NasaExoplanetLoader()
exoplanets = exo_loader.load()  # Orbital parameters with proper units
print(exoplanets['orbital_period'])  # DimArray with unit: days

# Load PRISM climate data for a specific location
climate_loader = PrismClimateLoader(lat=40.7128, lon=-74.0060)  # NYC
data = climate_loader.load(start_date='2020-01-01', end_date='2020-12-31')
print(data['temperature'])  # DimArray with unit: degC
print(data['precipitation'])  # DimArray with unit: mm

# All loaders support caching at ~/.dimtensor/cache/

Dimensional Inference (v2.0+)

from dimtensor.inference import infer_dimension, get_equations_by_domain

# Infer dimension from variable name
result = infer_dimension("velocity")
print(result.dimension)    # L·T⁻¹ (length/time)
print(result.confidence)   # 0.9

# Works with prefixes and suffixes
result = infer_dimension("initial_velocity_x")
print(result.dimension)    # L·T⁻¹

# Query physics equations
mechanics = get_equations_by_domain("mechanics")
for eq in mechanics[:3]:
    print(f"{eq.name}: {eq.formula}")
# Newton's Second Law: F = ma
# Kinetic Energy: KE = ½mv²
# Gravitational Force: F = Gm₁m₂/r²

Automatic Unit Inference (v3.3.0+)

from dimtensor.inference import infer_units
from dimtensor import units

# Infer unknown units from equations
equations = [
    "F = m * a",      # Newton's second law
    "E = F * d"       # Work equation
]
knowns = {
    "m": units.kg,
    "a": units.m / units.s**2,
    "d": units.m
}
unknowns = ["F", "E"]

result = infer_units(equations, knowns, unknowns)
print(result["F"])  # kg·m·s⁻² (newton)
print(result["E"])  # kg·m²·s⁻² (joule)

# Detect dimensional inconsistencies
equations_bad = ["v = a + t"]  # Invalid: cannot add acceleration to time
result = infer_units(equations_bad, {"a": units.m/units.s**2, "t": units.s}, ["v"])
# Raises DimensionError

Dimensional Linting (v2.1+)

# Lint a file for dimensional issues
dimtensor lint physics_simulation.py

# Example output:
# physics.py:15:4: W002 Potential dimension mismatch: LT⁻¹ + LT⁻²
#   velocity + acceleration
#   Suggestion: Cannot add/subtract LT⁻¹ and LT⁻². Check your units.

# JSON output for IDE integration
dimtensor lint --format=json src/

# Strict mode (report all inferences)
dimtensor lint --strict script.py

Useful Links

Call for Contributions

dimtensor is an open source project and welcomes contributions of all kinds. Here are ways to get involved:

  • Report bugs - Open an issue
  • Request features - Share ideas in discussions
  • Contribute code - See our contributing guide
  • Improve docs - Fix typos, add examples, clarify explanations
  • Share use cases - Write tutorials or blog posts

Writing code isn't the only way to contribute. Good issues, documentation improvements, and community engagement are just as valuable.

License

MIT

About

Unit-aware tensors for physics and scientific machine learning

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Contributors 2

  •  
  •