Skip to content

marcus912/aws-mla-certification-notes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

39 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

AWS Machine Learning Associate (MLA) Certification Notes

License: MIT Certification

Comprehensive, exam-focused study notes for the AWS Certified Machine Learning - Associate (MLA-C01) certification exam.

πŸ“– Overview

This repository contains concise, exam-focused study notes for the AWS Machine Learning Associate certification. All content is optimized for efficient studying with:

  • βœ… Brief, scannable notes - No lengthy explanations
  • βœ… Exam-focused content - Prioritizes exam-relevant information
  • βœ… Visual organization - Tables, comparisons, and quick references
  • βœ… Comprehensive coverage - All exam domains covered
  • βœ… Hands-on guidance - Lab recommendations and practice scenarios

🎯 Quick Start

New to this repository? Start here:

  1. πŸ“ Read the Study Guide for exam overview and 10-week study plan
  2. ⚑ Bookmark the Cheat Sheet for quick reference
  3. πŸ“š Work through topics in the Structure section below
  4. βœ… Track your progress using the Study Progress checklist

Structure

Core ML Concepts

AWS ML/AI Services

Quick References

Study Progress

Core ML Knowledge

  • Machine Learning Fundamentals
  • Model Training & Evaluation
  • Feature Engineering

AWS ML Services

  • Amazon SageMaker (Custom ML)
    • Hyperparameters (Algorithm configuration)
    • Training & Fine-Tuning (Transfer learning)
    • JumpStart (Pre-built models)
  • SageMaker Clarify (Bias Detection)
  • AWS ML Algorithms (17 built-in algorithms)

AWS AI Services (Pre-trained)

  • NLP Services (Comprehend, Translate, Transcribe, Polly)
  • Vision Services (Rekognition, Textract)
  • Conversational AI (Lex)
  • Search & Recommendations (Kendra, Personalize)
  • Specialized (A2I, Lookout, Fraud Detector)
  • Generative AI (Bedrock, Amazon Q)

Data & MLOps

  • Data Services (S3, Glue, Athena, EMR, Kinesis, Lake Formation, Ground Truth)
  • MLOps & Deployment (Deployment strategies, inference optimization)
    • Experiments & Tracking (SageMaker Experiments, TensorBoard)
    • CI/CD (Model Registry, Pipelines, Kubernetes)
    • Monitoring (Model Monitor, observability, cost)
  • Security (IAM, Core Principles, Security Services)
    • Encryption (KMS, Secrets Manager, at rest & in transit)
    • Network Security (VPC, Security Groups, VPC Endpoints)

πŸ“ About Code Examples

Code blocks in these notes are for:

  • Conceptual understanding - Illustrate how services work
  • Parameter reference - Show configuration options you'll see in exam scenarios
  • NOT for memorization - You won't write code on the exam

Focus on: Service names, parameter names, workflow concepts - not syntax.

Tags

  • #core - Core exam topic
  • #exam-tip - Exam-specific insight
  • #hands-on - Practice/lab required
  • #gotcha - Common pitfall
  • #important - High priority

πŸ“Š Repository Stats

  • Total Notes: 21 comprehensive markdown files
  • Total Lines: 9,170 lines of exam-focused content
  • Coverage: All 4 AWS MLA exam domains (100%)
  • Algorithms Covered: 17 SageMaker built-in algorithms
    • Supervised: Linear Learner, XGBoost, KNN, Factorization Machines
    • Computer Vision: Image Classification, Object Detection, Semantic Segmentation
    • NLP: BlazingText, Seq2Seq, Object2Vec
    • Time Series: DeepAR
    • Unsupervised: K-Means, PCA, LDA, NTM
    • Anomaly Detection: Random Cut Forest, IP Insights
  • Services Covered: 25+ AWS ML/AI services
    • Traditional AI Services (Comprehend, Rekognition, Lex, Textract, Kendra, Personalize, etc.)
    • Generative AI (Bedrock: Claude, Titan, Stable Diffusion; Amazon Q family; Agents with aliases)
    • SageMaker ecosystem (Training, Clarify, Ground Truth, Pipelines, Experiments, TensorBoard, JumpStart, Role Manager, Lineage Tracking)
    • Data services (S3, Glue, Athena, EMR, Kinesis, Redshift, Lake Formation)
    • Data Lakes (Lake Formation: column/row security, LF-Tags, permissions)
    • Instance Types (M5, C5, P3, P4d, G4dn, G5, Inf1, Trn1) - Training & inference selection
  • Exam Tips: 333 #exam-tip tags throughout
  • Study Time: 10-week suggested plan in study guide

🀝 Contributing

Contributions are welcome! To maintain consistency:

  1. Follow the format in TEMPLATE.md
  2. Keep notes brief and exam-focused
  3. Use appropriate tags (#core, #exam-tip, #hands-on, #gotcha, #important)
  4. Update cross-references when adding new content

πŸ“ Usage

For Students:

  • Browse topics by category in the Structure section
  • Use search (Ctrl/Cmd + F) to find specific keywords
  • Check off items in Study Progress as you learn
  • Review Cheat Sheet before exam day

For AI-Assisted Study:

  • Provide keywords or topics, and AI will organize/update notes accordingly
  • Example: "Add notes about AWS Forecast" or "Explain concept drift"
  • AI follows guidelines in CLAUDE.md for consistency

πŸ“‚ Project Structure

aws-mla-certification-notes/
β”œβ”€β”€ CLAUDE.md                          # Repository guidance for AI
β”‚
β”œβ”€β”€ core-ml/                           # Core ML Concepts
β”‚   β”œβ”€β”€ ml-fundamentals.md
β”‚   β”œβ”€β”€ model-training-evaluation.md
β”‚   └── feature-engineering.md
β”‚
β”œβ”€β”€ sagemaker/                         # Amazon SageMaker
β”‚   β”œβ”€β”€ sagemaker.md                   # SageMaker hub
β”‚   β”œβ”€β”€ sagemaker-hyperparameters.md
β”‚   β”œβ”€β”€ sagemaker-training.md
β”‚   β”œβ”€β”€ sagemaker-jumpstart.md
β”‚   └── sagemaker-clarify.md
β”‚
β”œβ”€β”€ aws-services/                      # AWS ML/AI Services
β”‚   β”œβ”€β”€ aws-ml-algorithms.md
β”‚   β”œβ”€β”€ aws-ai-services.md
β”‚   β”œβ”€β”€ aws-generative-ai.md
β”‚   └── data-services.md
β”‚
β”œβ”€β”€ mlops/                             # MLOps & Deployment
β”‚   β”œβ”€β”€ mlops-deployment.md            # Deployment hub
β”‚   β”œβ”€β”€ mlops-experiments.md
β”‚   β”œβ”€β”€ mlops-cicd.md
β”‚   └── mlops-monitoring.md
β”‚
β”œβ”€β”€ security/                          # Security
β”‚   β”œβ”€β”€ security.md                    # Security hub
β”‚   β”œβ”€β”€ security-encryption.md
β”‚   └── security-network.md
β”‚
β”œβ”€β”€ guides/                            # Quick References
β”‚   β”œβ”€β”€ study-guide.md                 # START HERE!
β”‚   β”œβ”€β”€ cheat-sheet.md                 # Quick reference
β”‚   └── TEMPLATE.md                    # Template
β”‚
└── README.md                           # This file

πŸ”— External Resources

βš–οΈ License

MIT License - Feel free to use these notes for your own exam preparation!


Good luck with your certification journey! πŸŽ“

If you find these notes helpful, please ⭐ star this repository.

About

Exam-focused study notes for the AWS Certified Machine Learning - Associate (MLA-C01) certification exam.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •