Screening Patient Misidentification Errors Using a Deep Learning Model of Chest Radiography: A Seven Reader Study
This is a PyTorch implementation of the SimChest paper:
@article{kim2025screening,
title={Screening Patient Misidentification Errors Using a Deep Learning Model of Chest Radiography: A Seven Reader Study},
author={Kim, Kiduk and Cho, Kyungjin and Eo, Yujeong and Kim, Jeeyoung and Yun, Jihye and Ahn, Yura and Seo, Joon Beom and Hong, Gil-Sun and Kim, Namkug},
journal={Journal of Imaging Informatics in Medicine},
volume={38},
number={2},
pages={694--702},
year={2025},
publisher={Springer}
}
CUDA_VISIBLE_DEVICES=0,1,2,3 python main_supcon.py --dataset real --name SupCon_scratch \
--print_freq=5 --save_freq 1 --num_workers 8 --aug True --warm \
--batch_size 8 --model resnet50 --method SupCon --epochs 100
Google Drive or you can use gdown in Python
!gdown https://drive.google.com/uc?id=1I8IgZ6mjPwvCPDk0EutkYH6UYOY865_nIf you want to get CXR image similarity logit, run the code below.
python model_inference.py
Page: https://mi2rl.co
Email: kiduk.amc@gmail.com
@Article{khosla2020supervised,
title = {Supervised Contrastive Learning},
author = {Prannay Khosla and Piotr Teterwak and Chen Wang and Aaron Sarna and Yonglong Tian and Phillip Isola and Aaron Maschinot and Ce Liu and Dilip Krishnan},
journal = {arXiv preprint arXiv:2004.11362},
year = {2020},
}


