Skip to content

add code of klotski and fate. #206

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions research/SYSU/Fate/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
model_weights/
132 changes: 132 additions & 0 deletions research/SYSU/Fate/dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
import datasets
import random
import os

def get_line_from_dataset(dataset, line):
# there are some topics and None in dataset
if len(dataset['train'][line]['text']) < 128:
line += 1
return get_line_from_dataset(dataset, line)
return dataset['train'][line]['text']

def get_inputs():
if not os.path.exists('datasets/wikitext-103-v1'):
os.makedirs('datasets/wikitext-103-v1')
# load from HF
dataset = datasets.load_dataset('wikitext', 'wikitext-103-v1')
dataset.save_to_disk('datasets/wikitext-103-v1')
else:
# load from local
dataset = datasets.load_from_disk('datasets/wikitext-103-v1')

# get_line = []
# for _ in range(num_prompts):
# get_line.append(random.randint(0, 1801350-1))

# inputs = ()
# for line in get_line:
# input_ids = tokenizer(get_line_from_dataset(dataset, line), return_tensors="pt").input_ids
# inputs = inputs + (input_ids,)
# return inputs

# sum
def get_xsum_inputs():
if not os.path.exists('datasets/xsum'):
os.makedirs('datasets/xsum')
# load from HF
dataset = datasets.load_dataset('xsum')
dataset.save_to_disk('datasets/xsum')
else:
# load from local
dataset = datasets.load_from_disk('datasets/xsum')

return dataset['validation']

# sum
def get_samsum_inputs():
if not os.path.exists('datasets/samsum'):
os.makedirs('datasets/samsum')
# load from HF
dataset = datasets.load_dataset('Samsung/samsum')
dataset.save_to_disk('datasets/samsum')
else:
# load from local
dataset = datasets.load_from_disk('datasets/samsum')

return dataset['test']

# translate
def get_wmt_inputs():
if not os.path.exists('datasets/wmt16'):
os.makedirs('datasets/wmt16')
# load from HF
dataset = datasets.load_dataset("wmt16", "ro-en")
dataset.save_to_disk('datasets/wmt16')
else:
# load from local
dataset = datasets.load_from_disk('datasets/wmt16')

return dataset['test']

# mmlu
def get_mmlu_inputs():
if not os.path.exists('datasets/mmlu'):
os.makedirs('datasets/mmlu')
# load from HF
dataset = datasets.load_dataset("lighteval/mmlu", "all")
dataset.save_to_disk('datasets/mmlu')
else:
# load from local
dataset = datasets.load_from_disk('datasets/mmlu')

return dataset['test']

# gsm8k
def get_gsm8k_inputs():
if not os.path.exists('datasets/gsm8k'):
os.makedirs('datasets/gsm8k', exist_ok=True)
# load from HF
config = datasets.DownloadConfig(resume_download=True, max_retries=100)
dataset = datasets.load_dataset("gsm8k", "main", download_config=config)
dataset.save_to_disk('datasets/gsm8k')
else:
# load from local
dataset = datasets.load_from_disk('datasets/gsm8k')

return dataset['test']

# ChatGPT-prompts
def get_ChatGPT_prompts_inputs():
if not os.path.exists('datasets/ChatGPT-prompts'):
os.makedirs('datasets/ChatGPT-prompts')
# load from HF
dataset = datasets.load_dataset("MohamedRashad/ChatGPT-prompts")
dataset.save_to_disk('datasets/ChatGPT-prompts')
else:
# load from local
dataset = datasets.load_from_disk('datasets/ChatGPT-prompts')

return dataset['train']

# openai_humaneval
def get_openai_humaneval_inputs():
if not os.path.exists('datasets/openai_humaneval'):
os.makedirs('datasets/openai_humaneval')
# load from HF
dataset = datasets.load_dataset("openai/openai_humaneval")
dataset.save_to_disk('datasets/openai_humaneval')
else:
# load from local
dataset = datasets.load_from_disk('datasets/openai_humaneval')

return dataset['test']

if __name__ == "__main__":
dataset = get_openai_humaneval_inputs()
# dataset = dataset['validation']
for i in range(len(dataset)):
if i < 5:
# print(dataset[i])
print(dataset[i])


99 changes: 99 additions & 0 deletions research/SYSU/Fate/expert_ARC_cache.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
class ARC_Cache:
def __init__(self, max_size):
self.max_size = max_size
self.p = 0 # 自适应参数,用于调整T1和T2的大小

self.T1 = [] # 最近使用列表,保存专家ID
self.T2 = [] # 频繁使用列表,保存专家ID
self.B1 = [] # T1的Ghost列表,保存专家ID
self.B2 = [] # T2的Ghost列表,保存专家ID

for expert_id in range(max_size):
self.update(expert_id)

def is_evicted(self, expert_id):
if (expert_id in self.T1) or (expert_id in self.T2):
return False
else:
return True

def update_list(self, expert_list):
evicted_list = []
for expert_id in expert_list:
evicted_id = self.update(expert_id)
if (evicted_id is not None) and (evicted_id not in expert_list) and (evicted_id not in evicted_list):
evicted_list.append(evicted_id)
return evicted_list

def update(self, expert_id):
if expert_id in self.T1:
self.T1.remove(expert_id)
self.T2.append(expert_id)
elif expert_id in self.T2:
self.T2.remove(expert_id)
self.T2.append(expert_id)
elif expert_id in self.B1:
self._adjust_p(min(len(self.T1), self.max_size))
evicted_expert_id = self._replace(expert_id)
self.B1.remove(expert_id)
self.T2.append(expert_id)
return evicted_expert_id
elif expert_id in self.B2:
self._adjust_p(-min(len(self.T2), self.max_size))
evicted_expert_id = self._replace(expert_id)
self.B2.remove(expert_id)
self.T2.append(expert_id)
return evicted_expert_id
else:
evicted_expert_id = None
if len(self.T1) + len(self.B1) == self.max_size:
if len(self.T1) < self.max_size:
self.B1.pop(0)
evicted_expert_id = self._replace(expert_id)
else:
evicted_expert_id = self.T1.pop(0)
elif len(self.T1) + len(self.T2) + len(self.B1) + len(self.B2) >= self.max_size:
if len(self.T1) + len(self.T2) + len(self.B1) + len(self.B2) >= 2 * self.max_size:
if len(self.B1) > 0:
self.B1.pop(0)
else:
self.B2.pop(0)
evicted_expert_id = self._replace(expert_id)
self.T1.append(expert_id)
return evicted_expert_id

def _adjust_p(self, delta):
self.p = min(self.max_size, max(0, self.p + delta))

def _replace(self, expert_id):
if (len(self.T1) > 0) and ((expert_id in self.B2 and len(self.T1) > self.p) or len(self.T1) > self.p):
evicted_expert_id = self.T1.pop(0)
self.B1.append(evicted_expert_id)
else:
if len(self.T2) > 0:
evicted_expert_id = self.T2.pop(0)
self.B2.append(evicted_expert_id)
else:
evicted_expert_id = self.T1.pop(0)
self.B1.append(evicted_expert_id)
return evicted_expert_id


if __name__ == "__main__":
arc_cache = ARC_Cache(max_size=3)
arc_cache.initialize_cache([1,2,3])

evicted_id = arc_cache.update(4)
print(f"Evicted Expert: {evicted_id}")

evicted_id = arc_cache.update(2)
print(f"Evicted Expert: {evicted_id}")

evicted_id = arc_cache.update(5)
print(f"Evicted Expert: {evicted_id}")

evicted_id = arc_cache.update(3)
print(f"Evicted Expert: {evicted_id}")

evicted_id = arc_cache.update(6)
print(f"Evicted Expert: {evicted_id}")
44 changes: 44 additions & 0 deletions research/SYSU/Fate/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import argparse
from utils import str2bool
from mindnlp.transformers import AutoTokenizer
from models.Qwen.modeling_qwen_moe import Qwen2MoeForCausalLM
import mindspore as ms
from mindnlp.core import set_default_dtype

def add_parser_arguments(parser):
parser.add_argument("--model", type=str, default="Qwen/Qwen1.5-MoE-A2.7B", help="The model name.")
parser.add_argument("--path", type=str, default="model_weights", help="The path to the model weights.")
parser.add_argument("--early_stopping", type=str2bool, nargs='?', const=True, default=True)
parser.add_argument("--min_length", type=int, default=1)
parser.add_argument("--max_length", type=int, default=256)
parser.add_argument("--pin-weight", type=str2bool, nargs="?", const=True, default=True)
parser.add_argument("--memory_budget", type=int, default=0, help="GB")
parser.add_argument("--device", type=str, default='0')
parser.add_argument("--overlap", type=str2bool, nargs='?', const=True, default=True)

if __name__ == "__main__":
parser = argparse.ArgumentParser()
add_parser_arguments(parser)
args = parser.parse_args()
set_default_dtype(ms.float16)
import mindspore.context as context
context.set_context(pynative_synchronize=True)

model_name = args.model
if model_name == "Qwen/Qwen1.5-MoE-A2.7B":
tokenizer = AutoTokenizer.from_pretrained("model_weights/qwen1.5-moe-a2.7b/tokenizer")
model = Qwen2MoeForCausalLM(args)

model.eval()

input_prompt = "Hey, are you conscious? Can you talk to me?"
input_tokenizer = tokenizer(input_prompt, return_tensors="ms")
input_ids = input_tokenizer.input_ids
attention_mask = input_tokenizer.attention_mask

(output_ids, prefill_time) = model.generate(input_ids, attention_mask=attention_mask, expriment_mode="decoding")

outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
print(outputs)
# outputs = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# print(outputs)
92 changes: 92 additions & 0 deletions research/SYSU/Fate/models/Qwen/configuration_qwen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
from mindnlp.transformers.configuration_utils import PretrainedConfig

class Qwen2MoeConfig(PretrainedConfig):

model_type = "qwen2_moe"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vocab_size=151936,
hidden_size=2048,
intermediate_size=5632,
num_hidden_layers=24,
num_attention_heads=16,
num_key_value_heads=16,
hidden_act="silu",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
# tie_word_embeddings=False,
rope_theta=1000000.0,
use_sliding_window=False,
sliding_window=32768,
max_window_layers=21,
attention_dropout=0.0,
decoder_sparse_step=1,
moe_intermediate_size=1408,
shared_expert_intermediate_size=5632,
num_experts_per_tok=4,
num_experts=60,
norm_topk_prob=False,
output_router_logits=False,
router_aux_loss_coef=0.001,
mlp_only_layers=None,
eos_token_id=151643,
bos_token_id=151643,
pad_token_id=151643,
# **kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if use_sliding_window else None
self.max_window_layers = max_window_layers

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id

# MoE arguments
self.decoder_sparse_step = decoder_sparse_step
self.moe_intermediate_size = moe_intermediate_size
self.shared_expert_intermediate_size = shared_expert_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.norm_topk_prob = norm_topk_prob
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers

# super().__init__(
# tie_word_embeddings=tie_word_embeddings,
# **kwargs,
# )

def get_Qwen_config(name):
if "/" in name:
name = name.split("/")[1]
name = name.lower()

if name == "qwen1.5-moe-a2.7b":
config = Qwen2MoeConfig()
else:
raise ValueError(f"Invalid model name: {name}")
return config

if __name__ == "__main__":
config = get_Qwen_config("qwen1.5-moe-a2.7b")
config.offload = True
print(config.d_ff)
Loading