Skip to content
Jose A. Hernando edited this page Dec 3, 2019 · 2 revisions

Design of det-sim using as input track energy deposits

Pipe-lines

  • Define the pipe-lines, the input/output arguments and parameters:

read + branch(s1_wf, s2_wf) + wf + trigger + write

two implementations: MC-full, MC-energy-deposits

  • S1 pipe:

    s1_wf: S1 + s1_at_pmt + s1_pmt_wf

    output: [(add)] per sensor for PMTs

    S1: input: [(x, y, z, E)]

      output: [(x, y, t, nph)]
    
      parameter: w_s
    

    s1_at_pmt:

      input [(x, y, t, nph)]
    
      ouput: [(t, nph)] per sensor
    
      requires: pmt_psf(x, y, z, id-sensor)
    

    s1_pmt_wf:

      input: [(t, nph)] por sensor
    
      parameters: gain, noise, base-line per id-sensor
                             wf_width, wf_sampling_time
      output: (adc) por sensor
    
  • S2 pipe:

    s2_wf: ie-generate + ie-propagation + ie-difussion + EL + branch(s2_at_pmt + s2_pmt_wf, s2_at_sipm + s2_sipm_wf)

    output: [(add)] por sensor por PMTs and SiPMs

    ie-generate:

          input: [(x, y, z, E)] - deposits
    
          parameters: wi-parameter, fano-factor
    
          outputs: [(x, y, z, nie)] - number of ionized-electrons
    

    ie-progagate:

          inputs : [(x, y, z, nie)]
    
          output: [(x, y, t, nie)]
    
          parameters: lifetime or lifetime-function, v-drift
    

    ie-difusse:

          inputs: [(x, y, t, nie)]
    
          output:[(x, y, t, nie)]
    
          parameters: diffusion-coefficients: transverse and longitudinal
                              z-EL, v-drift
    

    EL:

          inputs  : [(x, y, t, nie)]
    
          outputs: [(x, y, t, nph)]
    
          parameters: EL-gain, EL-sigma, 
    

    s2_at_pmt:

          inputs:. [(x, y, t, nph)]
    
          require: pmt_psf(x, y, z = z_EL, id-sensor) or geometrical_correction_function(x, y, id)
    
          outputs: [(t, nph)] per id-sensor
    
          parameters: EL-z, v-drift, pmt_wf_time_sampling
    

    s2_at_sipm:

          input: [x, y, t, nph]
    
          require: sipm_psf(x, y, id-sensor)
    
          output: [(t, nph)] per id-sensor 
    
          parameters: EL-z, v-drift, sipm_wf_time_sampling
    

    s2_ pmt_wf:

          input: [nph] per id-sensor
    
          parameters: gain, noise, base-line per id-sensor
                             wf_width, wf_sampling_time
    
          output: [adc] por id-sensor
    

    s2_sipm_wf:

       input: [nph] per id-sensor
    
       parameters: gain, noise, base-line por id-sensor
                           wf_width, wf_sampling_time
    
      output: [adc] per id-sensor
    

wf : s1_pmt_wf + s2_pmt_wf, s2_sipm_wf_s2

trigger:

write:

About PSFs

We can consider different PSFs:

  1. theoretical PSF (starting from Gonzalo's PSF and consider integral in the surface of sensors and reflexions in the light tube)

  2. PSF from Kr data. Consider the Kr maps to simulate electron drift and PMT-PSF. Use Ander's SiPM-PSF from SiPM.

  3. PSF from simulation. Get Kr full simulation and either obtain the Kr-maps or parametize sensor's response à la Gonzalo.

Clone this wiki locally