-
Notifications
You must be signed in to change notification settings - Fork 3
Home
- Define the pipe-lines, the input/output arguments and parameters:
read + branch(s1_wf, s2_wf) + wf + trigger + write
two implementations: MC-full, MC-energy-deposits
-
S1 pipe:
s1_wf: S1 + s1_at_pmt + s1_pmt_wf
output: [(add)] per sensor for PMTs
S1: input: [(x, y, z, E)]
output: [(x, y, t, nph)] parameter: w_ss1_at_pmt:
input [(x, y, t, nph)] ouput: [(t, nph)] per sensor requires: pmt_psf(x, y, z, id-sensor)s1_pmt_wf:
input: [(t, nph)] por sensor parameters: gain, noise, base-line per id-sensor wf_width, wf_sampling_time output: (adc) por sensor -
S2 pipe:
s2_wf: ie-generate + ie-propagation + ie-difussion + EL + branch(s2_at_pmt + s2_pmt_wf, s2_at_sipm + s2_sipm_wf)
output: [(add)] por sensor por PMTs and SiPMs
ie-generate:
input: [(x, y, z, E)] - deposits parameters: wi-parameter, fano-factor outputs: [(x, y, z, nie)] - number of ionized-electronsie-progagate:
inputs : [(x, y, z, nie)] output: [(x, y, t, nie)] parameters: lifetime or lifetime-function, v-driftie-difusse:
inputs: [(x, y, t, nie)] output:[(x, y, t, nie)] parameters: diffusion-coefficients: transverse and longitudinal z-EL, v-driftEL:
inputs : [(x, y, t, nie)] outputs: [(x, y, t, nph)] parameters: EL-gain, EL-sigma,s2_at_pmt:
inputs:. [(x, y, t, nph)] require: pmt_psf(x, y, z = z_EL, id-sensor) or geometrical_correction_function(x, y, id) outputs: [(t, nph)] per id-sensor parameters: EL-z, v-drift, pmt_wf_time_samplings2_at_sipm:
input: [x, y, t, nph] require: sipm_psf(x, y, id-sensor) output: [(t, nph)] per id-sensor parameters: EL-z, v-drift, sipm_wf_time_samplings2_ pmt_wf:
input: [nph] per id-sensor parameters: gain, noise, base-line per id-sensor wf_width, wf_sampling_time output: [adc] por id-sensors2_sipm_wf:
input: [nph] per id-sensor parameters: gain, noise, base-line por id-sensor wf_width, wf_sampling_time output: [adc] per id-sensor
wf : s1_pmt_wf + s2_pmt_wf, s2_sipm_wf_s2
trigger:
write:
We can consider different PSFs:
-
theoretical PSF (starting from Gonzalo's PSF and consider integral in the surface of sensors and reflexions in the light tube)
-
PSF from Kr data. Consider the Kr maps to simulate electron drift and PMT-PSF. Use Ander's SiPM-PSF from SiPM.
-
PSF from simulation. Get Kr full simulation and either obtain the Kr-maps or parametize sensor's response à la Gonzalo.